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10 
MULTILEVEL MODELING FOR 

CONTINUOUS RESPONSE 
VARIABLES 

OBJECTIVES OF THIS CHAPTER 

This chapter introduces multilevel modeling for continuous response variables. It starts with 
an introduction to multilevel modeling, model-building strategies, model fit statistics, 
centering, and data structure followed by a description of the research questions and data. 
Then several models, from the unconditional (null) model to the random-intercept model 
and random-coefficient model to the contextual models, are illustrated using R with step-
by-step instructions. R commands are explained, and the output is interpreted for each model 
in detail. The chapter also illustrates how the results are displayed in publication-quality tables 
using the R command and reported in text. It focuses on model fitting with R, as well as on 
interpreting and presenting the results. After reading this chapter, you should be able to: 

• Determine when multilevel modeling for continuous variables is used. 
• Formulate multilevel models. 
• Conduct multilevel modeling analysis for continuous response variables using R. 
• Interpret the output. 
• Compute and interpret the intraclass correlation coefficient (ICC). 
• Be familiar with model fitting strategies. 
• Compare models using the likelihood ratio test. 
• Present results in publication-quality tables using R. 
• Write the results for publication. 

381 
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10.1 MULTILEVEL MODELING: 
AN INTRODUCTION 
In previous chapters, we have focused on single-level analytic techniques for categorical 
response variables. Multilevel modeling has been widely used in education, social, and 
behavioral sciences in recent years, and researchers are increasingly interested in 
applying this technique to analyze multilevel data in their research. This chapter pre­
sents multilevel modeling for continuous outcome variables when the data structure has 
more than one level. 

10.1.1 Multilevel Data Structure 
Multilevel data, nested data, or hierarchical structured data have a data format in which 
observations at lower levels are nested within a higher level. For example, in businesses, 
employees are nested within companies; in educational research, students are nested in 
schools; in medical science, patients are nested within hospitals; in political sciences, 
voters are nested within districts; and in sociology, families are nested within com­
munities. Observations in the same group could be more homogeneous than those 
across different groups, and thus, the assumption of independence is violated. Another 
type of multilevel data structure occurs in longitudinal studies in which there are 
repeated measures for each subject. In this case, measures for multiple time points are 
nested within a subject. This type of analysis is known as the miUtilevel analysis for 
change (Singer & Willett, 2003). The focus of this text is the cross-sectional data 
structure. 

What can midtilevel modeling do? There are several advantages to using multilevel 
modeling. First, in midtilevel modeling, variables at higher levels can be included in the 
model to estimate their relationships with the outcome variable. Second, we can 
examine whether an effect or slope of a variable at a lower level is allowed to vary among 
higher level variables. Third, we can also examine whether higher level variables 
moderate the relationships between lower level variables and the outcome variable. 

10.1.2 Intraclass Correlation 
With a multilevel data strucmre, the observations within a group or cluster may violate 
the assumption of independency. In other words, the observations within the same 
group or cluster may be more homogeneous than those in other groups or clusters. To 
justify why multilevel modeling is warranted, we also need to examine how much 
variance of the outcome variable is accounted for by groups or clusters. The intraclass 
correlation coefficient (ICC) is used as an index to measure the proportion of variance 
in the outcome variable explained by groups or clusters (Hox, 2010; Raudenbush & 
Bryk, 2002; Snijders Sc Bosker, 2012). It is the ratio of the between-group variance to 
the total variance. Its range is from 0 to 1. When it is close to 0, it means that using 
multilevel modeling might not be a good strategy for data analysis. A larger ICC 
provides strong evidence that this technique is needed. 
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10.1.3 Overview of a Basic Two-Level Model 
Let us look at a basic two-level model with one predictor in each level. In the following 
example, researchers are interested in estimating the math achievement scores from a 
student-level variable, math self-efficacy, and a school-level variable (whether a school is 
public). The level 1 predictor variable is math self-efficacy (gceffic). Both the inter­
cept and the slope of gceffic are allowed to vary randomly across schools. The level 2 
predictor is whether a school is public or private (public). Following the convention 
of model specification by Raudenbush and Bryk (2002), a two-level model can be 
expressed as: 

Level 1 : Yg ^ PQJ + /Sygcef f ic,y + Tg 
Level 2 ; jSpy - yoo + ToiPublicy + «q/ 

Pij = 7io + TnPuhli^ + «v 

where Yy represents the math achievement score for the rth student in the yth school, 
Poj is the level 1 intercept, the average math achievement score in the^h school, )8iy is 
the level 1 slope for gceffic in the^h school, and gceffic,^ represents the value of 
math self-efficacy of the ith student in the ̂ h school, ry is the random error, which is 
the deviation of the individual's math score from the average math score in the school. 

The 700 is the overall intercept of the outcome variable across schools. It is the prediaed 
mean math achievement score controlling for the effect of the level 2 predictor 
(i.e., when the level 2 predictor variables are held constant at 0). 7oi represents the effect 
of the level 2 variable public on the intercept. 710 represents the mean of the level 1 
slope when the level 2 predictors are held constant at 0, and Ji 1 represents the effect of 
the level 2 predictor public. 71 ] is the cross-level interaaion between gceffic and 
public, which moderates the effect of math self-efficacy on math achievement scores. 
UQJ and Uy are the random effects associated with the level 1 intercept and the slope of 
gceffic across schools, respectively. In other words, the level 1 intercept and the slope 
of gceffic are allowed to vary randomly across schools so their respective variances 
(i.e., between-group variance and slope variance) need to be estimated. 

Fix Effects Versus Random Effects 
In multilevel modeling, fixed effects are the regression coefficients that estimate the 
relationships between the predictor variables and the outcome variable from the entire 
population (West et al., 2014), whereas random effects are the randomly varying 
parameters across higher level units. For example, the random intercept {UQJ) in the 
previous example is a random deviation from the overall intercept, and the random 
coefficient (uy) is a random deviation from the overall fixed effect, the slope of 
gceffic. Variance and covariance components are estimated for random effects. For 
example, in the two-level model above, the variance and covariance components 
include the between-group variance for the intercept, the variance for the random 
coefficient or slope, and the covariance between the intercept and the coefficient. 
Sometimes, random effects are estimated in terms of standard deviations since they are 
just the square root of variances. 
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"What if an ordinary least-squares (OLS) regression instead of multilevel modeling is 
used? In other words, what will happen if random effects are not estimated? When a 
single-level regression analysis is conducted to analyze multilevel data, the precision of 
parameter estimates is compromised (Heck & Thomas, 2015). Heck and Thomas 
(2015) pointed out that multilevel modeling has four advantages over the OLS 
regression method. These advantages include incorporating regression equations at 
different levels into a single statistical model, more accurate estimates of standard errors, 
flexibility in specifying various models, and the capability of estimating different types 
of response variables. 

By using multilevel modeling, we can estimate the influence of both the student-level 
and school-level predictors on the outcome variable. We can also investigate whether 
there are cross-level interactions between variables at different levels. In addition, we can 
estimate random effects by allowing the intercept and slopes of lower level predictors to 
vary randomly at higher levels. The variance and covariance components of the random 
effects can also be determined. For example, the estimated error variance for r,y is the 
within-group variance, the estimated variance for tiQj is the intercept variance, which is 
the between-group variance, and the estimated variance for uy is the slope variance. 

10.1.4 Model-Building Strategies 
Although researchers may have their own strategies to build multilevel models, a 
common practice illustrated by Raudenbush and Bryk (2002), Snijders and Bosket 
(2012), and other publications (Garson, 2013, 2020; Heck et al., 2010; Heck & 
Thomas, 2015; Kreft & de Leeuw, 1998; Luke, 2004; West et al., 2014) is to start 
from a basic model and work up to more complex models. Specifically, this strategy 
starts with the unconditional means model with no level 1 or level 2 predictors (null 
model). This model is equivalent to the one-way random-effects analysis of variance 
(ANOVA) model. This model serves as the baseline model for fiimre model com­
parisons. The unconditional means model estimates the overall average of the outcome 
variable across all subjects and the between-group and within-group variances. The 
variance between groups or clusters estimated from this model can be used to calculate 
the ICC so that we can decide whether multilevel modeling is needed. The 
between-group and within-group variances can also be used to compute the proportion 
of variance explained after the level I and level 2 predictors are added to the model. 
Next, we can add level 1 predictors and build a random-intercept model and a 
random-coefficient model. In the random-intercept model, only intercepts are allowed 
to vary fteely in higher level clusters and the level 1 slopes are fixed. In the 
random-coefficient model, both intercepts and coefficients of the level I predictors are 
allowed to vary across higher level clusters. Finally, we add level 2 predictors to the level 
2 model so the random-coefficient model includes both level 1 and level 2 predictors. 
This model is referred to as the contextual model. If the model has more than two 
levels, then higher level predictors can be added. 

Although the earlier simple-to-complex model building strategy is commonly followed 
by researchers, you can decide whether all the steps need to be followed for your own 
research. 
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10.1.5 Model Fit Statistics 
As with logistic regression models, several measures of goodness-of-fit statistics, such as 
the likelihood ratio test, the Akaike information criterion (AIC), and Bayesian infor­
mation criterion (BIC) statistics, can be applied to multilevel modeling for continuous 
outcome variables. The following discussion is a brief review of these tests (see Chapter 3 
for a more detailed description). 

Likelihood Ratio Test 
The likelihood ratio test can be used to compare nested models. Models are nested 
when one model, the reduced model, is a special case of the other one, the full model. 
For example, more constraints can be put on parameters in one model than the other. A 
simple case is that one model (model 1) contains predictor variables A) and A2, and the 
second model (model 2) contains an extra variable A3. We conclude that model 1 is 
nested within model 2 since predictors in the former are the subset of the latter. In 
multilevel modeling, an unconditional model is nested within a random-intercept 
model, which is then nested within a random-coefBcient model and finally a contex­
tual model with both level 1 and level 2 predictor variables. 

The likelihood ratio test statistic is expressed as the difference in — 2LL between nested 
models, where LL stands for the log likelihood value for the fitted model with either the 
full maximum likelihood (ML) estimation or the restricted maximum likelihood 
(REML) estimation. Since deviance equals — 2LL, the likelihood ratio test is also 
referred to as the difference in deviance, which follows a chi-square distribution, with 
the degrees of freedom of the distribution equaling the difference in the number of 
parameters between two nested models. The difference in deviance is often expressed as 
a generic form: G = Deviance for the reduced model — Deviance for the full model or 
^Reduced ~ -^Fuil' where the reduced model has fewer variables and is nested within the 
full model. As with logistic regression models in previous chapters, we use the likeli­
hood ratio test to compare nested models from a simple model with one predictor to 
more complex models with multiple predictors. In multilevel modeling, we can also use 
the same test to compare a series of nested models from the unconditional means model 
to the random-intercept model to more complex models, such as the contextual models 
with level 1 and level 2 prediaor variables. A significant likelihood ratio chi-square test 
statistic indicates that a more complex model fits the data better than a simpler, nested 
model. 

Information Criteria Indices: AIC and BIC 
The AIC and the BIC statistics can be used to compare non-nested models. Both 
AIC and BIC statistics can be applied to multilevel modeling. The AIC statistic 
adjusts the deviance by the number of parameters. It is expressed as —2LL + 2k or 
deviance + 2k, where k is the number of parameters. The BIC statistic is defined as 
BIC = — 2LL + ln(«) X k = -f ln(«) X k, where n is the sample size and k is the 
number of parameters. Smaller AIC and BIC statistics indicate a better fit of the 
model. 
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10.1.6 Centering 
The purpose of centering is to make the results more interpretative. It is often used 
when a predictor variable does not have a meaningful value of zero. By subtracting the 
mean of a predictor variable ftom each value, we obtain a meaningful zero for the 
predictor variable. Predictors at both levels of the model can be centered. Two types of 
centering are often used in multilevel modeling. One is grand-mean centering, and the 
other is group-mean centering. For the grand-mean centering, we subtract the grand 
mean of the predictor variable ftom each value of the sample. For example, when we 
use grand-mean centering of the math efficacy (efficacy), we compute the overall 
mean of this variable and then subtract it ftom each score of efficacy. For the 
group-mean centering, we subtract the group mean, which is the mean of each group or 
cluster where individuals are nested ftom each score. For example, to group-mean 
center the predictor variable efficacy, we first compute the group mean for each 
school where a student belongs and then subtract the mean for each school (i.e., group 
mean) from each score of efficacy. 

The choice of grand-mean centering and group-mean centering is complicated, and this 
topic has been widely discussed in the literature (Enders & Tofighi, 2007; Garson, 
2020; Hofinann & Gavin, 1988; Hox, 2010; Kreft et al., 1995; Luke, 2004; Ma et al., 
2008; McCoach, 2010; Paccagnella, 2006). The advantage of grand-mean centering is 
that the subsequent multilevel models with this centering are mathematically equivalent 
to the models using raw scores without centering. It also makes the computation faster 
and reduces convergence problems (Hox, 2010). On the other hand, group-mean 
centering produces a model that is mathematically different ftom the raw score model. 
Hox (2010) suggested using group-mean centering with caution for novice users. 
Enders and Tofighi (2007) suggested that researchers use group-mean centering when 
level 1 variables and the interactions among them are the research interests, whereas 
grand-mean centering is a good choice if level 2 variables are the focus after controlling 
for level 1 variables. Therefore, the decision of tising centering methods shoidd be based 
on research questions or theories. 

10.1.7 Sample Size 
In multilevel modeling, the sample size needs to be considered at different levels. 
Theoretically, we would like to have a large sample size for all levels to obtain unbiased 
estimates for fixed and random effects. Factors such as the complexity of the model, the 
intraclass correlation, cross-level interactions, and power considerations impact sample 
size determination. Although there is no definite number to define a sufficient sample 
size in the literature, researchers have suggested several rules-of-thumb for a two-level 
model. Kreft and de Leeuw (1998) recommended a sample size of more than 20 groups 
for cross-level interactions. Maas and Hox (2005) conduaed simulations and the results 
suggested that a sample size of 50 or more groups is needed to obtain unbiased estimates 
of the standard errors at level 2. They also found that the standard errors were under­
estimated at level 2 with a sample size of 30 groups. Hox (2010) su^ested a 50/20 
rule for cross-level interactions, that is, 50 level 2 groups with 20 level 1 subjects. In 
addition, a 100/10 rule (i.e., 100 level 2 groups with 10 level 1 subjects) was su^ested 
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when the focus was on random effects. For a more detailed review of other simulation 
smdies, refer to Garson (2020). Sometimes, when the group number at level 2 is small, 
mtdtilevel modeling can still be a useful tool for analyzing nested data, but the results 
should be interpreted with caution. 

10.1.8 Data Structure for Model Fitting 
In R, the data structure for multilevel modeling is a single dataset containing variables at 
different levels. For example, a two-level model needs a single dataset with both 
smdent-level and school-level variables and the former variables are nested with the 
latter. If the original student-level and school-level variables are saved in two separate 
datasets, then they need to be merged into one dataset in a format where students are 
nested within schools. This stacked data format requires that each school have multiple 
records, one for each student. For example, when 50 students are selected from a school, 
in the dataset, 50 students with different IDs (with each one having a row) are nested 
within the same school ID. Such a dataset needs to be created before model fitting. 

10,2 MULTILEVEL MODELING FOR 
CONTINUOUS OUTCOME VARIABLES 
10.2.1 Research Example and Research Questions 
In the following example, researchers are interested in examining the relationships 
between high-school students' mathematics achievement and mathematics self-efficacy, 
school type, and school climate using the Educational Longimdinal Study of2002 (ELS: 
2002) data. The student-level predictor variable is students' mathematics self-efficacy, 
and the two school-level predictor variables are school type and school climate. The 
following research questions will be addressed: 

1. Can high-school students' mathematics scores be predicted by students' 
mathematics self-efficacy? 

2. Do school characteristics, such as school type and school climate, impact 
math achievement? 

3. Do mathematics scores vary across schools? 

4. Does the relationship between mathematics self-efficacy and mathematics 
achievement vary across schools? 

5. Are there any interaction effects between the two school-level variables 
(i.e., school type and school climate) and math self-efficacy? In other words, 
does school type or school climate moderate or influence the relationship 
between mathematics self-efficacy and mathematics achievement? Put it 
another way: Does the effect of mathematics self-efficacy on mathematics 
achievement vary across school type and school climate? 
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10.2.2 Description of the Data and Sample 
The ELS:2002 base-year data are used for the following analyses. The variables are 
listed as follows: 

• mathach: mathematics item response theory (IRT) estimated scores of 
high-school smdents 

• gceffic: math self-efficacy (grand-mean centered) 

• public: school type (1= public, 0 = private and others) 

• csclimat: school climate (grand-mean centered). 

10.3 MULTILEVEL MODELING FOR 
CONTINUOUS RESPONSE VARIABLES 
WITH R 
10.3.1 The lme() Function in the nlme Package 
The Ime () function in the nlme package (Pinheiro et al., 2021) is used for multilevel 
models with continuous response variables. Since nlme is a user-written package, you 
need to install it first by typing install .packages ("nlme") and then load the 
package by typing library (nlme). 

The basic syntax for the model formula of Ime () includes two components. The 
first component or argument specifies the dependent variable and the predictor 
variable(s) for the fixed effects component, which are separated by the tilde (~). 
When there are multiple predictor variables in the formula, they are connected by 
plus (+) symbols. This is the fixed effects part of the model, which looks the same as 
the model formula for any linear regression in Im (). The predictor variables from 
different levels are specified here, but the command itself does not tell the specific 
levels within which the variables belong to. Next, the random argument specifies the 
random effects of the model and the grouping variable which are separated by a 
vertical line (|). A predictor variable or a list of predictor variables that have random 
coefficients is specified first, followed by a vertical line (|), and then, an identifier 
variable at a higher level as the grouping variable. Sometimes the grouping variable 
may be omitted. In addition to the model formula, several optional arguments, such 
as the data argument for the data frame, method = "ML" for the maximum 
likelihood estimation, and na . action = "na . omit" for removing missing data, 
can be specified. For example, the command lme(y ~ x, random = ~ 1 | 
schid, method = "ML") tells R to fit a multilevel model to estimate a 
continuous outcome variable y with a predictor variable x, and random = ~ 1 | 
schid specifies the random intercepts varying across schools with 1 as the intercept 
and schid as the identifier variable. The method = "ML" argument requests the 
full maximum likelihood estimation rather than the default restricted maximum 
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likelihood (method = "REML"). For more details on how to use this function, type 
help (Ime) in the command prompt after loading the nlme package. 

10.3.2 Unconditional Means Model (Model 1: Null Model) 
The unconditional means model or the null model is known as the one-way 
random-effects ANOVA. Neither level 1 nor level 2 predictor variables are included 
in the model. This model can be expressed as follows: 

Level 1 : Yij - /3q,- + nj 
Level 2 : = yoo + 

The ml <- Ime (mathach ~ 1, random = ~1|SCH_ID, na.action = 
"na.omit", method = "ML", data = chplO) command is used to fit the 
unconditional model (model 1). In the Ime () function, the fixed effects part of the 
model is specified first. Because this is the unconditional model without any predictor 
variables, the continuous outcome variable mathach and the intercept 1 are specified 
as mathach ~1. The random effects part of the model is then specified after the fixed 
part as random = ~1 which is separated from the grouping variable SCH_ID by a 
vertical line (|). SCH_ID is the grouping variable or identifier variable. Since no 
random coefficients for any predictor variables are specified in this model, only 1 is 
specified as the intercept. The method = "ML" argument requests the maximum 
likelihood estimation method. The na . action = "na . omit" argiunent removes 
the missing data if there are any. The fitted model is named ml and the output is 
displayed by the summary (ml) command. 

> library(foreign) 
> chplO<-read.dta ("C: /CDA/els2002 ,dta") 
> chplO <- chplO[!is.na(chplO$mathach)&!is.na(chplO$efficacy)&!is.na(chplO$ 
public)&!is.na{chplO$sclimate), ] 
> chplO$csclimat <- chplO$sclimate-mean (cliplO$sclimate, na.rm—TRUE) 
> chplO$gceffic <- chplO$efficacy-mean(chplO$efficacy, na.rin=TRUE) 
> attach(chplO) 
> # install.pacJcages ("nlme") 
> library(nlme) 
> # Null model with Ime () 
> ml <-Ime (mathach ~ 1, random = -*-11 SCH_ID, na.action= "na.omit", method="ML", 
data=chplO) 
> summary(ml) 
Linear mixed-effects model fit by maximum lilcelihood 
Data: chplO 

AIC BIC logLilc 
75354.68 75376.27 -37674.34 

Random effects: 
Formula: ̂ 1 ! SCH_ID 

(Intercept) 
StdDev: 5.6338 

Residual 
10.45764 
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Fixed effects: mathach 1 

Value Std.Error DF t-value p-value 
(Intercept) 39.12354 0.2537879 9249 154.1584 0 

Standardized Within-Group Residuals: 

Min Q1 Med Q3 Max 
-3.08523311 -0.71736082 0,02771707 0.74094481 2.99690652 

Number of Observations: 9866 
Number of Groups: 617 

Interpreting the Output 
The R output for the Ime () flmction includes the model fit statistics such as the AIC, 
the BIC, and the log-likelihood value, the random effects, the fixed effects, the stan­
dardized within-group residuals, and the number of observations and groups. 

First, the statement "Linear mixed-effects model fit by maximum 
likelihood" tells us the linear mixed model is fitted with the ML estimation rather 
than the REML estimation method. The AIC and BIC statistics are 75,354.68 and 
75,376.27, respectively. The log likelihood value is —37,674.34. These fit statistics will 
be used for model comparisons in the following sections. 

Then, the random effects section contains the model formula of the random effects and 
the standard deviations of the intercept and residual. The column (labeled Inter­
cept) reports the standard deviation at level 2 (i.e., schools) and the column (labeled 
Residual) reports the within-school standard deviation. The between-school 
standard deviation is 5.634 and the within-school standard deviation is 10.458. To 
request the variance components of the model, we need to either square the standard 
deviations or use the VarCorr (ml) command. The between-school variance (TOO) is 
31.740, and the within-school variance (<j^) is 109.362. 

> VarCorr(ml) 
SCH_ID = pdLogChol (1) 

Variance StdDev 
(Intercept) 31.7397 5.63380 
Residual 109.3623 10.45764 

Next, the fixed effects section contains the model formula of the fixed effects and the 
estimate for the intercept, its standard error, the degrees of freedom, the t statistic, and 
the associated p value. Since no predictors are included in the model, this section only 
displays the estimate for the intercept. The intercept 700 (labeled Intercept) is 
39.124, which is significant (p = .000). This means that the average math 
achievement score across all schools is 39.124. 
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Since currently the confint () function does not work with Ime () function, we use 
the intervals (ml) command to extract the 95% confidence intervals of the 
estimates. The residts are displayed as follows. 

> confint (ml) 
Error in confint.ime (ml) : 
not (yet) implemented. Contributions are welcome; use intervals () instead (for 

now) 
> intervals(ml) 
Approximate 95% confidence intervals 
Fixed effects: 

lower est. upper 
(Intercept) 38.62609 39.12354 39.621 

attr(,"label") 
[1] "Fixed effects:" 
Random Effects: 
Level: SCH_ID 

lower est. upper 
sd((Intercept)) 5.246673 5.6338 6.049491 

Within-group standard error: 
lower est. upper 

10.30785 10.45764 10.60962 

The ICC is defined as the proportion of total variance in the outcome variable + TQQ) 
explained by the between-group variance (TOO). It is expressed as ICC = Too/fo"^ + Too). 

From the earlier output, we compute 

ICC = 31.740/(31.740+ 109.362) = .225, 

which indicates that 22.5% of the total variance is accounted for by schools in level 2. 

Finally, the output shows the minimum, first quartile, median, third quartile, and 
maximum values of the standardized within-group residuals. These residuals are nor­
mally distributed. In addition, the number of observations and the number of groups 
are provided. A total of 9,866 observations in level 1 is nested in 617 groups 
(i.e., schools) in level 2. 

10.3.3 Random-Intercept Model (Model 2] 
Next, we include the predictor variable gceffic (math self-efficacy) to the level 1 
equation, with all other pans of the level 1 equation the same. The model is referred to 
as the random-intercept model since the intercept is allowed to vary across schools. This 
model can be expressed as follows: 

Level 1 : Ty = Poj + jSygceffic, + 
Level 2 : jSq, = yoo + "oj 

Py — Tio 
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In the level 1 equation, the predictot variable is math self-efficacy (gceffic) and the 
outcome variable is math achievement (mathach). The predictor variable is 
grand-mean centered. The level 2 equations express the random intercepts (jSqy) and the 
fixed slopes 03 ly). 

The command m2 <- Ime (mathach ~ gceffic, random = ~11 SCH_ID, 
na. action = "na. omit", method = "ML", data = chplO) is used to fit 
the random-intercept model (model 2) after a predictor variable gceffic is added to 
the fixed part of the model. The fitted model is named m2. Just as in the unconditional 
model, no random coefficients are specified in the random part of the model. The 
following output is displayed by the summary (m2) command. 

> # Random-intercept model 
> m2 <- Ime {mathach ~ gceffic, random 
data^^chplO) 
> summary(m2) 
Linear mixed-effects model fit by maximum likelihood 
Data: chplO 

AIC BIC logLik 
73960.62 73989.41 -36976.31 

Random effects; 
Formula: ̂ 1 | SCH_ID 

(Intercept) 
5.243221 

1|SCH_ID, na.action="na.omit*', method="ML", 

StdDev: 
Residual 
9.743885 

Fixed effects: mathach gceffic 

(Intercept) 
gceffic 
Correlation: 

Value 
39.12132 
4.67671 

Std.Error 
0.2362576 
0.1207781 

DF 
9248 
9248 

t-value 
165.5875 
38.7215 

p-value 
0 
0 

gceffic 
(Intr) 

0 

Standardized Within-Group Residuals: 

Min Q1 Med 
-3.96543934 -0.66900059 0.05549942 

Number of Observations: 9866 
Number of Groups: 617 

Q3 
0.71325893 

Max 
3.30894729 

Interpreting the Output 
In the fixed-effects section, the estimated intercept is 39.121, and the coefficient for 
gceffic is 4.677. Both estimates are significant (p < .001). The intercept can be 
interpreted as follows: The average math achievement score is 39.121 for students with 
a value of math self-efficacy at 0. The coefficient for gceffic is 4.677, t = 38.722, 
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p < .001, which indicates that for a one-unit increase in math self-efficacy, there is an 
increase of 4.677 points in math achievement scores. 

We also use the intervals (m2) command to extract the 95% confidence intervals 
of the parameter estimates. The results are displayed as follows. 

> intervals(m2) 
Approximate 95% confidence intervals 

Fixed effects: 
lower 

38.65825 
4.43998 

est. upper 
39.121317 39.584387 
4.676707 4.913435 

(Intercept) 
gcefflc 
attr(,"label") 
[1] "Fixed effects: " 

Random Effects: 
Level: SCH_ID 

lower est. upper 
sd ((Intercept)) 4.882778 5.243221 5.630272 

Within-group standard error: 

lower 
9.604314 

est. upper 
9.743885 9.885484 

To request the variance components of the model, we need to either square the 
standard deviations or use the VarCorr (m2) command. The between-school vari­
ance (TQO) is 27.491, and the within-school variance (o"^) is 94.943. 

> VarCorr(m2) 
SCH_ID = pdLogChol (1) 

Variance StdDev 
(Intercept) 27.49137 5.243221 
Residual 94.94330 9.743885 

After the level 1 predictor is entered in the model, the variance for the random intercept 
has decreased to 27.491, compared with the original 31.740 in the unconditional model. 

Likelihood Ratio Test Comparing the Unconditional Model and the 
Random Intercept Model 

> # Model comparison 
> anova(ml, m2) 

Model df AIC BIG logLlk 
ml 13 75354.68 75376.27 -37674.34 
m2 24 73960.62 73989.41 -36976.31 

Test L.Ratio p-value 

1 vs 2 1396.056 <.0001 
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The likelihood ratio test is used to compare the unconditional model (model 1) and the 
random-intercept model (model 2). The anova(inl, m2) command compares the 
log-likelihood statistics of these two models using the likelihood ratio test. The likeli­
hood ratio testji^-^j^ = 1,396.056,/) < .001, which indicates that the random-intercept 
model fits the data better than the unconditional model. 

10.3.4 Random-Coefficient Model: Random-Intercept and Slope 
Model With Level 1 Variable (Model 3) 
In addition to the random intercept, level 1 slopes (i.e., the coefficients of the level 1 
predictors) can also be specified to be random. In other words, a predictor may have a 
random slope across clusters. For example, we may allow the effect of math self-efficacy 
on math achievement to vary across different schools. This model can be expressed as 
follows: 

Level 1 : = /SQ,- + jSjygceffic,y + 
Level 2 : j8qy = Too + 

Plj= 7lO + «l; 

The level 1 equation for the random-coefficient model is the same as that for the 
random-intercept model. The math self-efficacy (gceffic) is still the only predictor 
variable, and math achievement is the outcome variable. Unlike the random-intercept 
model, in the random-coefficient model, the level 2 equations specify that both the 
intercept and the coefficient at level 1 are random across schools. 

The command m3 <- Ime (mathach ~ gceffic, random = ~gceffic | 
SCH_ID, na. action = "na. omit", method = "ML", data = chplO) is 
used to fit the random-coefficient model (model 3) after a predictor variable gceffic 
is added to the random part of the model. The fitted model is named m3. The 
summary (m3) command displays the output of the fitted model. 

> # Random-coefficient model 
> m3 <- Ime (mathach gceffic, random = —gceffic | SCH_ID, na.action = "na.omit", 
method="ML", data=chplO) 
> summary (m3) 
Linear mixed-effects model fit by maximum likelihood i . 
Data: chplO 

AIC BIC logLik 
73953.39 73996.57 -36970.7 

Random effects: 
Formula: —gceffic | SCH_ID 
Structure: General positive-definite, Log-Cholesky parametrization 

StdDev Corr 
(Intercept) 5.237083 (Intr) 
gceffic 1.003340 0.389 
Residual 9.708897 
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Fixed effects: mathach gceffic 
Value Std.Error 

(Intercept) 39.09802 0.2360843 
gceffic 4,64856 0.1281118 
Correlation; 

gceffic 
(Intr) 
0.115 

Standardized Within-Group Residuals: 

DF 
9248 
9248 

Min 
-3.88739725 

Q1 
-0.66933019 

Med 
0.05610879 

t-value 
165.61046 
36.28516 

Q3 
0.71053443 

p-value 
0 
0 

Max 
3.31730425 

Number of Observations: 9866 
Number of Groups: 617 

The fixed effects in the output look similar to those in the random-intercept model 
(model 2). We use the intervals (m3, which = "fixed") command to extract 
the 95% confidence intervals of the parameter estimates of the fixed effects. Without 
the which = "fixed" argument, an error message will occur since the confidence 
intervals cannot he computed for the variance and covariance components. The results 
are displayed as follows. 

> intervals{m3) 
Error in intervals.Ime(m3) : 
cannot get confidence intervals on var-cov components: Non-positive definite 

approximate variance-covariance 
Consider 'which = "fixed"' 
> intervals (m3, which = "fixed") 
Approximate 95% confidence intervals 

Fixed effects: 
lower 

(Intercept) 38.635295 
gceffic 4,397457 
attr(,"label") 
[1] "Fixed effects:" 

est. 
39.098025 
4.648559 

upper 
39.560755 
4.899661 

To request the variance and covariance components of the model, we use the 
VarCorr (m3) command. The restilts are displayed as follows. 

> VarCorr (m3) 
SCH_1D = pdLogChol (gceffic) 

Variance StdDev Corr 
(Intercept) 27.427040 5.237083 (Intr) 
gceffic 1.006691 1.003340 0.389 
Residual 94.262689 9.708897 

> .389*1.003*5.237 
[1] 2.043305 
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Interpreting the Output 
The VarCorr(m3) command reports the unstmctured variance-covariance com­
ponents. The between-school variance (TQO) is 27.427 and the within-school variance 
(cr^) is 94.263. 

The variance for the random coefficient of gceffic or the slope variance (labeled 
var (gceffic)) is 1.007. The output reports the correlation between gceffic and 
the intercept rather than the covariance between them. The correlation coefficient for 
gceffic and the intercept is .389. We can compute the covariance between gceffic 
and the intercept with the correlation between them and their standard deviations. The 
covariance equals the product of the correlation and the two standard deviations, so we 
compute .389*1.003*5.237 = 2.043. 

The within-school variance or the level 1 residual variance (labeled var (Residual)) 
is 94.263, which is similar to that of the random-intercept model. 

Model Comparisons Using the Likelihood Ratio Test 

> anova(m2, m3) 

Model df AIC BIC logLik Test L.Ratio p-value 
m2 14 73960.62 73989.41 -36976.31 
m3 2 6 73953.39 73996.57 -36970.70 1 vs 2 11.23146 0.0036 

The likelihood ratio test is used to compare the random-intercept model (model 2) and 
the random-coefficient model with a level 1 predictor (model 3). The anova (m2, 
m3) command compares the log likelihood statistics of these two models. The like­
lihood ratio test Xm ~ 11.231,/> < .01, which indicates that the random-coefficient 
model has a signihcandy better fit than the random-intercept model. Therefore, 
allowing a random coefficient in the model is justified. 

10.3.5 Contextual Model With Level 1 and Level 2 Variables 
(Model 4) 
The contextual model is a special case of the random-coefficient model when both level 
1 and level 2 predictor variables are included. The two level 2 equations specify the 
intercept and slope from the level 1 equation to be random. In this example, two 
school-level variables, public and csclimat, are added to the level 2 equation. 
This model can be expressed as follows: 

Level 1 : Yy = jSq,- -f jSygcef f iCy -f rtj 
Level 2 : PQJ = -yog -f yoipublic^- + yo2CSclimat^- + UQJ 

Py = Tio + 
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With the level 1 equation the same as that for the previous random-coefficient model 
(model 3), the two school-level predictor variables are added to the equation for the 
random intercept at level 2. On the other hand, the equation for the random slope Py 
contains no predictor variables. 

The command m4 <- Ime (mathach ~ gceffic + public + csclimat, 
random = —gceffic | SCH_ID, na.action = "na.omit", method = 
"ML" , data = chplO) is used to fit the contextual model (model 4) after the two 
level 2 predictor variables public and csclimat are added to the model. 

> # Contextual model with predictor variables in both levels 
> m4 <- Ime {mathach — gceffic + public + csclimat, random = -gceffic |SCH_ID, 
na.action = "na.omit", method = "ML", data = chplO) 
> summary(m4) 
Linear mixed-effects model fit by maximum likelihood 
Data: chplO 

AIC BIC logLik 
73806.56 73864.14 -36895.28 

Random effects 
Formula: '-gceffic 1 SCH_ID 
Structure: General positive-definite, Log-Cholesky parametrization 

StdDev Corr 
(Intercept) 4.447067 (Intr) 
gceffic 1.037690 0.565 
Residual 9.713777 

Fixed effects: mathach ̂  gceffic + public + csclimat 

Value Std.Error DF t-value p-value 

(Intercept) 41.39652 0.4556953 9248 90.84255 0 
gceffic 4.62698 0.1282449 9248 36.07922 0 
publicpublic -2.89695 0.5248300 614 -5.51979 0 
csclimat 3.02747 0.3249720 614 9.31610 0 

Correlation: 

(Intr) gceffc pblcpb 
gceffic 0.065 
publicpublic -0.890 0.014 
csclimat -0.304 -0.008 0.350 

Standardized Within-Group Residuals: 

Min Q1 Med Q3 Max 

-3.88077064 -0.67411813 0.05771525 0.70333885 3. 41379144 

Number of Observations: 9866 
Number of Groups: 617 
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Interpreting the Output 
The fixed-effects table displays the intercept and coefficients for both the level 1 and 
level 2 predictor variables. The coefficient for gceffic is 4.627, t = 36.079,/) < .001, 
which indicates that students with higher mathematics self-efficacy tend to have higher 
mathematics achievement when holding other predictors constant. The effects of two 
school-level predictor variables are significant. The coefficient for public is —2.897, 
t = —5.520, p < .001, which indicates that students' mathematics scores in public 
schools tend to be lower than those in private schools. The coefficient for csclimat 
is 3.027, t = 9.316, p < .001, which indicates that schools with a better social climate 
tend to have higher mathematics scores. 

We use the intervals (m4, which = "fixed") command to extract the 95% 
confidence intervals of the parameter estimates of the fixed effects. The results are 
displayed as follows. 

> intervals (m4, which = "fixed") 
Approximate 95% confidence intervals 

Fixed effects: 

(Intercept) 
gceffic 
publicpublic 
csclimat 

lower 
40.503438 
4.375639 

-3.927424 
2.389408 

attr(,"label") 
[1] "Fixed effects:" 

est. 
41.396520 
4.626976 

-2.896953 
3.027470 

upper 
42.289602 
4.878313 

-1.866483 
3.665532 

To request the variance and covariance components of the model, we use the 
VarCorr (m4) command. The results are displayed as follows. 

> VarCorr(m4) 
SCH_ID = pdLogCliol (gceffic) 

Variance StdDev Corr 
(Intercept) 19.776405 4.447067 (Intr) 
gceffic 1.076801 1.037690 0.565 
Residual 94.357456 9.713777 

> .565*1.038*4.447 
[IJ 2.608032 

The variance for the random coefficient of gceffic or the slope variance (labeled 
gceffic)) is 1.077, the between-group variance (labeled Intercept) is 19.776. 
Since the correlation coefficient for gceffic and the intercept is .565 and the stan­
dard deviations of gceffic and the intercept are 1.038 and 4.447, respeaively, we 
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can compute the covariance between gceffic and the intercept as follows: 
.565*1.038*4.447 = 2.608. Both the slope variance and the covariance in model 4 
look similar to those in the random-coefficient model (model 3). After two school-level 
predictors are included in the model, the between-group variance decreases from 27.427 
to 19.776. The percentage decrease is computed as (27.427—19.776)127All = 27.9%. 
In other words, the school-level variables explain 27.9% of the between-group variance. 

> (27.427-19.776)/27.427 
[1] 0.2789587 

The within-school variance or the level 1 residual variance (labeled Resi(iual) is 
94.357, which is similar to that of the random-coefficient model. 

Model Comparisons Using the Likelihood Ratio Test 

> anova(m3, m4) 

Model df AIC BIC logLik Test L.Ratio p-value 
m3 1 6 73953.39 73996.57 -36970.70 
m4 2 8 73806.56 73864.14 -36895.28 1 vs 2 150.8293 <.0001 

The anova(m3, m4) command compares the log-likelihood statistics of the 
contextual model with both level 1 and level 2 predictor variables (model 4: m4) and the 
random-intercept and slope model with a level 1 predictor (model 3: mS). A comparison 
between these two models yields the value of the likelihood ratio test ^^2) ~ 150.829, 
p < .001, which indicates that the contextual model fits the data better. 

10.3.6 Contextual Model With Cross-Level Interactions 
(Model 5) 
We can also add cross-level interactions to the model by including level 2 predictor 
variables in the equation for the random slope (/Sy). This model can be expressed as 
follows: 

Level 1 : jSq, + )3ygceff icj,- -I-
Level 2 : j8q, = Too + ToiP^^lic^ A 7o2Csclimaty A «q/ 

Pij = Tio + + Tiacsclimaty + uy 

In R, we need to add the interaction term between public and gceffic and the 
interaction term between csclimat and gceffic in the model formula. The 
command m5 <- Ime (mathach ~ gceffic + public + csclimat + 
public*gceffic -t- csclimat*gceffic, random = ~gceffic | SCH_ID, 
method = "ML", data = chplO) is used to fit the contextual model with 
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cross-level interactions (model 5) after the cross-level interactions, public*gceffic 
and csclimat*gceffic, are added to the model. The fitted model is named m5. 
The summary (m5) command displays the resulting output. 

> # Contextual model with cross-level interactions 
> m5 <- Ime {mathach ~ gceffic + public + csclimat + public*gceffic + csclimat*gceffic, 
random =—gceffic I SCH_ID, method="ML", data=chplO) 
> summary(m5) 
Linear mixed-effects model fit by maximum likelihood 
Data: chplO 

AIC BIG logLik 
73806.63 73878.6 -36893.31 

Random effects: 
Formula: --gceffic | SCH_ID 
Structure: General positive-definite, Log-Cholesky parametrization 

StdDev Corr 
(Intercept) 4.453850 (Intr) 
gceffic 1.001821 0.583 
Residual 9.713346 

Fixed effects: mathach — gceffic + public + csclimat + public * gceffic + csclimat * 
gceffic 

Value Std.Error DF t-value p-value 
(Intercept) 41.31079 0.4598111 9246 89.84297 0.0000 
gceffic 4.22730 0.2792129 9246 15.14006 0.0000 
publicpublic -2.77430 0.5312182 614 -5.22252 0.0000 
csclimat 3.00094 0.3297024 614 9.10198 0.0000 
gceffic: publicpublic 0.52294 0.3237919 9246 1.61505 0.1063 
gceffic: csclimat -0.10002 0.2066567 9246 -0.48400 0.6284 
Correlation: 

(Intr) gceffc pblcpb csclmt gcffc:p 
gceffic 0.140 
publicpublic -0.892 -0.125 
csclimat -0.307 -0.058 0.351 
gceffic: publicpublic -0.125 -0.889 0.148 0.060 
gceffic: csclimat -0.056 -0.333 0.058 0.162 0. .368 

Standardized Within-Group Residuals: 

Min Q1 Med 
-3.90127367 -0.67502516 0.05711133 

Number of Observations : 9866 
Number of Groups: 617 

Q3 
0.70307008 

Max 
3.42698496 

Interpreting the Output 
The fixed-effects section displays the intercept and the coefficients for the level 1 and 
level 2 predictor variables and two interaction terms. Let us take a look at the coefficients 
for the two interaaion terms first since we are interested in the cross-level interactions. 
The coefficient for gceffic:public (yn) = -523, t = 1.615,> .05, and the 
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coefficient for gceffic: csclimat (712) = —.100, t = —.484, p > .05, which 
means both interaaions are not significant. What if there is a cross-level effect? How can 
it be interpreted? For example, if the interaction between public and gceffic is 
significant, then this effect can be interpreted as follows: The relationship between 
mathematics self-efficacy and mathematics achievement varies across school type. 

We use the intervals (m5, which = "fixed") command to extract the 95% 
confidence intervals of the parameter estimates of the fixed effects. The results are 
displayed as follows. 

> intervals(m5, which= •fixed") 
Approximate 95% confidence intervals 

Fixed effects: 

lower est. upper 

(Intercept) 40.4097378 41.3107948 42.2118519 

gceffic 3.6801490 4.2273014 4.7744538 
publicpublic -3.8172044 -2.7742967 -1.7313890 
csclimat 2.3536604 3.0009446 3.6482288 
gceffic rpublicpublic -0.1115691 0.5229414 1.1574518 
gceffic: csclimat -0.5049920 -0.1000226 0.3049469 

attr(,"label") 
[13 "Fixed effects;" 

To request the variance and covariance components of the model, we use the 
VarCorr (m5) command. The results are displayed as follows. 

> VarCorr(m5) 
SCH_ID = pdLogChol (gceffic) 

Variance StdDev Corr 
(Intercept) 19.836777 4.453850 (Intr) 
gceffic 1.003644 1.001821 0.583 
Residual 94.349097 9.713346 

> ,583*1.002*4 .454 •' •••• 
[1] 2.601875 

The variance and covariance components for the random effects for model 5 look 
similar to those for model 4, so they will not be interpreted here. 

Model Comparisons Using the Likelihood Ratio Test 

> anova (m4, m5) 
Model df 

m4 18 
m5 2 10 

AIC BIC 
73806.56 73864.14 
73806.63 73878.60 

Test L.Ratio p-value logLik 
-36895.28 
-36893.31 1 vs 2 3.933261 0.1399 
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After two interaction terms are added to the model, we again use the anova (m4, 
ni5) command to compare the log-likelihood statistics of the contexmal models with ot 
without interaaions (model 5 vs. model 4). The likelihood ratio test xf2) ~ ^-93, 
p = .140, which indicates that the contextual model with cross-level interaaions does 
not fit the data better than the contextual model without interactions. Therefore, we 
should remove the interaction terms from the model. 

10.4 MULTILEVEL MODELING FOR 
CONTINUOUS RESPONSE VARIABLES 
WITH THE Imer 0 FUNCTION IN THE 
lme4 PACKAGE 
10.4.1 The ImerO Function in the line4 Package 
The Imer () fimction in the lme4 package (Bates et al., 2015) can also be used for 
multilevel models for continuous response variables. Since lme4 is a user-written 
package, you need to install it first by typing install. packages ("lme4") and 
then load the package by typing library (Ime4). The model formula syntax of 
Imer () is similar to that of ime () introduced in the last section, but they are slighdy 
different in specifying the random effeas. The model formula in Imer () also includes 
two components connected by a plus (+) sign. The first component specifies the 
dependent variable and the prediaor variable(s), which are separated by the tilde (~). 
When there are more than one predictor variable in the formula, they are connected by 
plus (+) symbols. This is the fixed effects component of the model. Next, the random 
effeas component of the model is specified within parentheses, which is different from 
the random argiunent specified in Ime () for linear mixed effects models. Within 
parentheses, a predictor variable or a list of predictor variables that have random 
coefficients is specified first, followed by a vertical line (|), and then, an identifier 
variable as the grouping variable at a higher level. The REML = FALSE argument 
requests the full maximiun likelihood estimation rather than the default restricted 
likelihood (REML = TRUE). For example, the command Imerfy ~ x -f (II 
schid) , REML = FALSE, data = datal) tells R to fit a multilevel model to 
estimate a continuous outcome variable y on a predictor variable x with random 
intercepts varying across schools by specifying (1 | schid) , where 1 indicates the 
random intercept on the left of the vertical line (|) and schid is the identifier variable 
on the right. The REML = FALSE argument requests the maximum likelihood esti­
mation. For more details on how to use this function, type help (imer) in the 
command prompt after loading the ime 4 package. 

We use the ImerTest package (Kuznetsova et al., 2017) to request the associated 
p values for the t tests of the parameter estimates. Since ImerTest is a user-written 
package, you need to install it first by typing install .packages ("ImerTest") 
and then load the package by typing library (ImerTest). 
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In the following example, the m4 .b <- Imer (mathach ~ gceffic + public 
+ csclimat + (gceffici SCH_ID) , data = chplO, REML = FALSE) 
command tells R to fit the same contextual model (model 4) in the previous section 
after the two level 2 predictor variables public and csclimat are added to the 
model. The fitted model is named m4 .b. The following output is displayed by the 
summary (m4 . b) command. 

> # Contextual model with lmer{} 
> library(ImerTest) 
> library(lme4) 
> m4.b <- Imer (mathach — gceffic + public + csclimat + (gceffic | SCH_ID) , 
data=chplO, REML = FALSE) 
> summary(m4.b) 
Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's 
method [ImerModLmerTest] 

Formula: mathach gceffic + public + csclimat + (gceffic | SCH_ID) 
Data: chplO 

AIC BIG logLik deviance df.resid 
73806.6 73864.1 -36895.3 73790.6 9858 

Scaled residuals: 

Min IQ 
-3.8808 -0.6741 

Median 
0.0577 

3Q Max 
0.7033 3.4138 

Random effects: 

Groups Name Variance Std.Dev. 
SCH_ID (Intercept) 19.777 4.447 

gceffic 1.077 1.038 
Residual 94.357 9.714 

Number of obs: 9866, groups: SCH_ID, 617 
Fixed effects: 

0.56 

(Intercept) 
gceffic 
publicpublic 
csclimat 

Estimate 
41.3965 
4.6270 

-2.8969 
3.0275 

Std. Error 
0.4556 
0.1282 
0.5247 
0.3249 

df 
581.5800 
536.0261 
573.6036 
570.2441 

t value 
90.860 
36.086 
-5.521 
9.318 

PrOltl) 
< 2e-16 *** 
< 2e-16 *** 

5.12e-08 *** 
< 2e-16 *** 

Signif. codes: 0 ****' 0.001 '**' 0.01 0.05 0.1 

Correlation of Fixed Effects: 
(Intr) gceffc pblcpb 

gceffic 0.065 
publicpublc -0.890 0.014 
csclimat -0.304 -0.008 0.350 

The R output produced by the Imer () funaion is similar to that by the Ime () 
function introduced in the previous section. It includes the model fit statistics, the 
scaled residuals, the random effects, the number of observations and the number of 
groups, the fixed effects, and the correlations of the fixed effects. 
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The random effects section provides the variances and standard deviations for 
within-group, between-group, and the random coefficient of gceffic. It also provides 
the correlation coefficient for gceffic and the intercept. The results are the same as 
those provided by the VarCorr (in4) command in the previous section. 

The fixed effects section looks the same as that produced by the Ime () function. We 
use the confint (m4. b) command rather than the intervals () function to 
extract the 95% confidence intervals of the parameter estimates. The results are dis­
played as follows. 

> confint (m4 .b) 
Computing profile confidence intervals 

.sigOl 
,sig02 
,sig03 
.sigma 
(Intercept) 
gceffic 
publicpublic 
csclimat 

2,5 % 
4.1147172 
0.2734630 
0.4181463 
9.5715169 

40.4992243 
4.3740861 
-3.9287910 
2.3894054 

97.5 % 
4.805720 
1.000000 
1.493107 
9.859538 

42.291286 
4.880153 

-1,863101 
3.665517 

The 95% confidence intervals for both the random effects and the fixed effeas are 
provided. Please note that the confidence intervals for the random effects component are 
based on the standard deviations rather than the variances. The 95% confidence intervals 
for the fixed effects component are the same as those provided by the inter­
vals (m4, which = "fixed") command introduced in the previous section. 

10.4.2 Interpreting the Predicted Values With the 
ggpredictO Function in the ggeffects Package 
By using the ggpredictO function in the ggeffects package (Liidecke, 
2018b), we can compute the predicted values of the continuous response variable at 
specified values of the predictor variables. We first load the package with library 
(ggeffects) since it has been installed in previous chapters. The command 
m4.b.pub <- ggpredict (m4 .b, terms = "public") tells R to compute 
the predicted values of the response variable using the ggpredict () function. The 
argument inside the function includes the estimated model, m4 .b, and the terms = 
"public" option which specifies the predictor variable public. The other pre­
dictor variables are held either at their means or at the reference level. The output is 
assigned to an object named m4 . b . pub. The as . data . frame () function is used 
to request the standard errors. 

> library(ggeffects) 
>m4.b.pub <- ggpredict(m4.b, terms = "public") 
> m4.b.pub 
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# Predicted values of mathach 

public I Predicted 

catholic or other private 
public 

I 41.40 
38.50 

Adjusted for: 
* gceffic = 0.00 
* csclimat = -0.00 
* SCH_ID = 0 (population-level) 
> as.data.frame(m4.b.pub) 

X predicted 
1 catholic or 41.39651 

other private 
2 pxiblic 38.49957 
> plot(m4.b.pub) 
Loading required namespace: ggplot2 

95% CI 

std.error 
0.4556121 

0.2395262 

[40.50, 42.29] 
[38.03, 38.97] 

conf.low 
40.50352 

38.03010 

conf.high 
42,28949 

38.96903 

group 
1 

The output displays the predicted math scores for both Catholic or other private 
schools and public schools and other predictor variables are fixed at their means. The 
last section under the tide "Adjusted for" lists the means of the other three var­
iables. For Catholic or other private schools, the predicted math scores = 41.397 and 
for public schools, the predicted math scores = 38.500. 

The predicted math scores are plotted with plot (m4 .b.pub). Figure 10.1 shows 
the predicted math scores for both Catholic or other private schools and public schools. 

FIGURE 10.1 0 Predicted Math Scores for public at 0 and i With Others 
Fixed at Their Means 
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As shown in the graph, the predicted math scores for students in Catholic or other 
private schools are higher than those in public schools. 

We can compute the predicted scores for a continuous variable at given values by 
different groups. In the following example, we compute the predicted math scores for 
gceffic at different values by the two groups in public when holding other variables 
at their means. The command is as follows: m4.efpub <- ggpredict (m4 .b, 
terms = c ("gceffic", "public")). In the ggpredict () fimaion, the 
terms = c ("gceffic", "public") option specifies both gceffic and 
public, with the latter as the grouping variable. The output is assigned to an object 
named m4 . efpub and is plotted with the plot (m4 .efpub) command. 

> m4.efpub < - ggpredict(m4.b. terms = c("gceffic", "public")) 
> m4.efpub 
# Predicted values of mathach 
# public — catholic or other private 
gceffic | Predicted | 95% CI 

1 1 i 
o
 

1 
^
 

1 1 
1 33.99 1 [33.04, 34.95] 

-1.00 1 36.77 1 [35.86, 37.68] 
-0.60 1 38.62 1 [37.72, 39.52] 

0.00 1 41.40 f [40.50, 42.29] 
0.60 1 44.17 1 [43.26, 45.09] 
1.60 1 48.80 1 [47.80, 49.80] 

# public = public 
gceffic | Predicted I 95% CI 

-1.60 1 31.10 1 [30.53, 31.67] 
-1.00 1 33.87 1 [33.38, 34.37] 
-0.60 1 35.72 1 [35.25, 36.19] 
0.00 1 38.50 1 [38.03, 38.97] 
0.60 1 41.28 1 [40.76, 41.79] 
1.60 1 45.90 1 [45.24, 46.57] 

Adjusted for 
* csclimat = -0.00 
* SCH_ID = 0 (population-level) 
> plot(m4.efpub) 

Figure 10.2 shows the predicted math scores for gceffic at different values by the 
grouping variable public. As shown in the graph, the predicted math scores increase 
with the increase of students' self-eflicacy and the predicted math scores for students in 
Catholic or other private schools are higher than those in public schools. 

In the example above, we disregard the random effects component and the predicted 
math scores are on the population level. To account for the variability of the random 
effects, we need to specify the type = "re" option. With this option, the predicted 
math scores are still on the population level and stay the same, but the confidence 
intervals change after accounting for the variances of the random effects. The command 
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FIGURE 10.2 Predicted Math Scores for gceffic by public 
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is as follows: m4.efpub.r <- ggpredict (m4 .b, terms = c ("gceffic", 
"public") , type = "re"). In the ggpredict () funaion, everything stays 
the same exception the added type = "re" option. The output is assigned to an 
object named m4.efpub.r and is plotted with the plot {m4. ef pub. r) 
command. 

> m4.efpub.r <-ggpreciict(m4.b, terms = c ("gceffic", "public"), type - "re") 
> m4.efpub.r 

# Predicted values of mathach 

# public = catholic or other private 

gceffic Predicted 95% CI 

-1.60 33.99 [14.93, 53.06] 
-1.00 36.77 [17.71, 55.83] 
-0.60 38.62 [19.56, 57.68] 
0.00 41.40 [22.34, 60.46] 
0.60 44.17 [25.11, 63.23] 
1.60 48.80 [29.73, 67.86] 
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# public ~ public 
gceffic Predicted 95% CI 

-1.60 31.10 [12.05, 50.14] o
 

o
 

I—
1 

1 33.87 [14.83, 52.92] 
-0.60 35.72 [16.68, 54.77] 
0.00 38.50 [19.46, 57.54] 
0.60 41.28 [22.23, 60.32] 
1.60 45.90 [26.85, 64.95] 

Adjusted for: 
* csclimat = -0.00 
* SCH_ID = 0 (populationT-level) 
Intervals are prediction intervals. 
> plot(m4,efpub.r) 

Figure 10.3 shows the predicted math scores for gceffic by the grouping variable 
public with random effects. As shown in the graph, the predicted math scores are the 
same as those in Figure 10.2, but the confidence intervals are wider than those in 
Figure 10.2. 

FIGURE 10.3 
Effects 

Predicted Math Scores for gceffic by public With Random 
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10,5 MAKING PUBLICATION-
QUALITY TABLES 
10.5.1 Presenting the Results Using the stargazer Package 
For illustration purposes, we will make a table containing the results for only two models, 
the unconditional model and the contextual model with cross-level interactions. The 
commands for creating this table are explained as follows. By following this example, 
readers should easily be able to create a table containing the restilts for all the fitted models. 

We can use the stargazer package (Hlavac, 2018) to make a table containing the 
results of the two fitted models. After fitting the ml and m4 models with the Ime () 
function, we use the command as follows: stargazer (ml, m4, type = 
"text", align = TRUE, out = "mul.txt"). In the stargazer () func­
tion, we first specify the two model objects to be presented and then the type of table. 
The option type = "text" specifies the table type and the align = TRUE option 
aligns the results of the model. The out = "mul. txt" argument saves the output 
named mul. txt. Please note that only the fixed effects are presented in the table. 

> library(stargazer) 
Please cite as: 
Hlavac, Marek (2018) . stargazer: Well-Formatted Regression and Summary Statistics 
Tables. 
R package version 5.2.2. https://CRAN.R-project.org/package = stargazer 

> stargazer (ml, m4, type = "text", align=TRUE, out="mul. txt") 

Dependent variable: 

mathach 
(1) (2) 

gceffic 4.627*** 
(0.128) 

publicpublic -2.897*** 
(0.525) 

csclimat 3.027*** 
(0.325) 

Constant 39.124*** 41.397*** 
(0.254) (0.456) 

Observations 9,866 9,866 

Log Likelihood -37,674.340 36,895.280 

Akaike Inf. Grit. 75,354.680 73,806.560 

Bayesian Inf. Grit. 75,376.270 73,864.140 

Note: *p<0.1; **p<0.05; ***p<0.01 
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We can also create the table in the HTML format and copy it into Microsoft Word. 
The command is as follows: stargazer (ml, m4, type = "html", align = 
TRUE, out = "mul .htm"). It produces Table 10.1, as shown here in its original 
format, presenting the results for the unconditional model and the contextual model 
without cross-level interactions. 

We can add the variances and covariance directly from the output of the unconditional 
model (model 1) and the contextual model (model 4). The edited table is displayed as 
Table 10.2. 

10.5.2 Presenting the Results Using the texreg Package 
The results can also be displayed in a table using the screenregO and 
htmlregO functions from the texreg package (Leifeld, 2013). Since texreg 

TABLE 10.1 0 Results of the Two Multilevel Models: The Unconditional 
Model and the Contextual Model (Shown in Original Format Generated by R) 

Dependent variable; 

mathach 

-2.897-publicpublic 

0.525 

3.G27' csclimat 

10.325) 

41.397 onsta 

10 456) 

37,674.340 

75,354.680 

75,376.270 

-36,895.280 

73.806.560 

73,864.140 

Observations 

I Log Lil<elihood 

i Attaike Inf. Crit. 

Bayesian Inf. Crit. 

*P < .1 
"p < .05 
*'*p < .01. 
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TABLE 10.2 # Results of the Two Multilevel Models: The Unconditional 
Model and the Contextual Model (Edited) 

Dependent variable: 

Fixed Effects 

publicpublic 

mathach 

Unconditional Model 
(Model 11 

Coefficient (SE) 

Contextual Model 
(Model 41 

Coefficient (SEl 

L62T 

' .n-r ' r 

csclimat 

Constant 

Random Effects 

Slope variance (gcefficl 

jjWithin-school variance (cr'l 

Between-group variance (TOQI 

Covariance 

Observations 

Log Likelihood 

Akaike Inf. Crit. 

Bayesian Inf. Crit. 

*p < .1 
"p < .05 
•••p < .01 

39.124 

-2.897" 

0.525 

3.027" 

4 .397" 

109.362 

31.740 

9,866 

-37,674.340 

75,354.680 

75,376.270 

1.077 

94.357 

19.776 

2.608 

9,866 

-36,895.280 

73,806.560 

73,864.140 
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has been installed for previous chapters, we load the package by typing library 
(texreg). We use the following command: screenreg (list (ml, m4) ). 

> library(texreg) 

Version: 1.36.23 
Date: 2017-03-03 
Author: Philip Leifeld (University of Glasgow) 

Please cite the JSS article in your publications - see citation ("texreg") . 
> screenreg(list(ml, m4)) 

Model 1 Model 2 

(Intercept) 39.12 *** 41.40 *** 
(0.25) (0.46) 

gceffic 4.63 *** 
(0.13) 

publicpublic -2.90 *** 
(0.52) 

csclimat 3.03 *** 
(0.32) 

AIC 75354.68 73806.56 • 
BIG 75376.27 73864.14 
Log Likelihood -37674.34 -36895.28 
Num. obs. 9866 9866 
Num. groups 617 617 

*** p < 0.001, ** p < 0.01, * p < 0.05 

To create the table in the HTML format and copy it into Microsoft Word, we itse the 
command as follows: htmlreg (list (ml, m4) , file = "mul.doc", doc-
type = TRUE, html. tag = TRUE, head, tag = TRUE). The table is omitted 
here. 

10.6 REPORTING THE RESULTS 
Since multilevel models estimate the fixed effects and random effects, the results of both 
need to be reported. The following are the basic guidelines for reporting. Several 
common reporting guidelines provided in previous chapters can also be applied to the 
reporting for the multilevel modeling. Please note that what needs to be reported in the 
Results section in a research article and the formats for displaying results vary across 
disciplines and journals. 

First, as with other research examples, describe the purpose of your study and explain 
why the multilevel modeling is needed for the analysis. 
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Second, if a series of nested models is fitted, then report model-building steps and 
briefly describe each model. Report and interpret the intraclass correlation coefficient. 

Third, if necessary, report the results of the fitted models in a table including both the 
parameter estimates for the fixed effects and the variances and covariances for the 
random effects. If available, include deviance statistics (i.e., —2LL) and AIC and BIC 
statistics for these models in the table. 

Fourth, report and interpret the fixed effects of the predictor variables and variances and 
covariances in the final model. The following is an example of summarized results for 
the unconditional model and the contextual model. 

Multilevel modeling was used to examine the relationships between high-
school students' mathematics achievement and mathematics self-efficacy, 
school type, and school climate. Five models, from the unconditional (null) 
model to the contextual model with cross-level interactions, were fitted. 
Table 10.2 presents the parameter estimates for the fixed effects and random 
effects for the fitted models. For illustration purposes, the following inter­
pretations only focused on the results of the unconditional model (model 1) 
and the contextual model without cross-level interactions [model 4). 

Results for the Unconditional Model 
The between-school variance (TOO) was 31.740, and the within-school vari­
ance (o-^l was 109.362. The ICC = 31.740/(31.740 -t- 109.362) = .225, which 
indicated that 22.5% of the total variance was explained by schools in level 2. 
This empirical evidence showed that it was appropriate to use multilevel 
modeling for data analysis. 

Results for the Contextual Model Without Cross-Level Interactions 
The coefficient for gceffic was 4.627, t = 36.079, p < .001, which indicated 
that students with higher mathematics self-efficacy tended to have higher 
mathematics achievement when holding other predictors constant. The 
effects of two school-level predictor variables were also significant. The 
coefficient for public was —2.897, f = —5.520, p < .01, which indicated that 
students" mathematics scores in public schools tended to be lower than 
those in private schools. The coefficient for csclimat was 3.027, t = 9.316, 
p < .001, which indicated that schools with better social climate tended to 
have higher mathematics scores. 

Regarding the random effects, the variance and covariance components 
are displayed in Table 10.2. After two school-level variables were included in 
the contextual model (model 4], the between-school variance (TQOI decreased 
from 27.427 to 19.776 when compared with that for the random coefficient 
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model (model 3): {Tl.kTl - .11 bMllAll = 27.9%, which indicated that 
there was a decrease of 27.9% in the between-school variance from the 
random-coefficient model (model 3) to the contextual model without the 
cross-level interactions (model 4) after the two school-level variables were 
included. 

10.7 SUMMARY OF R COMMANDS IN 
THIS CHAPTER 

# Chap 10 R Script 

# Remove all objects 
rm(list — Is (all = TRUE)) 

# The following user-written packages need to be installed first by using 
install .packages (*^ ") and then by loading it with library () 

# library(nlme) 
# library(ImerTest) 
# library(lme4) 
# library(ggeffects) 
# library(stargazer) 
# library(texreg) 

# It is part of R base distribution 

# It is already installed for Chapter 2 
# It is already installed for Chapter 2 
# It is already installed for Chapter 4 

# Import the dataset 
library(foreign) 
chplO <- read.dta("C:/CDA/els2002.dta") 
chplO <- chplOI!is.na(chplO$mathach)&!is.na(chplO$efficacy)&!is.na(chplOS 
public)&!is.na(chplOSsclimate), ] 
chplOScsclimat <- chplO$sclimate-mean (chplO$sclimate, na.rm=TRUE) 
chplOSgceffic <- chplO$efficacy-mean(chplO$efficacy, na.rm=TRUE) 
attach(chplO) 

library(nlme) 

~1|$CH_ID, na.action = "na.omit", method="ML" 
# Null model with Ime () 
ml <- lme(mathach 1, random = 
data=chplO) 
summary(ml) 
intervals(ml) 
VarCorr(ml) 

# Random-intercept model 
m2 <- Ime (mathach ~ gceffic, random = —11SCH_ID, na.action = "na.omit", 
method="ML", data=chplO) 
summary(m2) 
intervals(m2) 
VarCorr (ni2) 
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•^gceffic | SCH_ID, na. action="na. omit", 

# Model comparison 
anova(ml, m2) 

# Random-coefficient model 
m3 <- lme(mathach — gceffic, random 
method="ML", data—chplO) 
summary(m3) 
intervals (m3, which="fixed") 
VarCorr(m3) 
anova(m2, m3) 

# Contextual model with predictor variables in both levels 
m4 <- Ime (mathach — gceffic + public + csclimat, random = ~gceffic| SCH_ID, 
na.action—"na.omit", method="ML", data—chplO) 
summary(m4) 
intervals (m4, which= "fixed") 
VarCorr{m4) 
anova(m3, m4) 

# Contextual model with cross-level interactions 
m5 <- Ime (mathach ~ gceffic + public + csclimat + public*gceffic + csclimat*gceffic, 
random = —gceffic | SCH_ID, method="ML", data=chplO) 
summary(m5) 
intervals (m5, which= "fixed") 
VarCorr(m5) 

anova(m4, m5) 

# Presenting the results with stargazerO 
library(stargazer) 
stargazer(ml, m4, type="text", align=TRUE, out="mul.txt") 
stargazer (ml, m4, type="html", align=TRUE, out="mul.htm") 

# Presenting the results with texregO 
library(texreg) 
screenreg(list(ml, m4) ) 
htmlreg(list(ml, m4), file="mul.doc", doctype—TRUE, html.tag=TRUE, head.tag=TRUE) 

# Contextual model with ImerO 
library(ImerTest) 
library(lme4) 
m4.b <- Imer (mathach — gceffic + public + csclimat + (gceffic|SCH_ID), data=chplO, 
REML = FALSE) 
summary(m4.b) 
confint(m4,b) 
confint(m4.b, method="Wald") 

# Marginal effects/Predicted values with ggpredictO in ggeffects 
library(ggeffects) 
m4.b.pub <- ggpredict (m4 .b, terms = "public") 
m4.b.pub 
as.data.frame(m4.b.pub) 
plot(m4.b.pub) 

m4.efpub<- ggpredict (m4 .b, terms = c ("gceffic", "public")) 
m4 .efpub 
plot(m4.efpub) 

m4.efpub.r<- ggpredict(m4.b, terms = c("gceffic", "public"), type = "re") 
m4 .efpub.r 
plot(m4.efpub.r) 

detach(chplO) 
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Glossary 
Cross-level interactions In a two-level model involve Including level 2 predictor variables In the 
equation for the random slope. In other words, there are Interaction terms between level 1 and level 2 
variables. 

Fixed effects are the regression coefficients that estimate the relationships between the predictor 
variables and the outcome variable from the entire population. 

Grand-mean centering Involves subtracting the grand mean of the predictor variable from each value of 
the sample. 

In group-mean centering we subtract the group mean from each value, which Is the mean of each 
group or cluster where Individuals are nested from each score. 

In the random-intercept model the Intercept Is allowed to vary across groups or clusters. 

Multilevel data, nested data, or hierarchical structured data have a data format In which observations at 
lower levels are nested within a higher level. 

Random-coefficient models Include both random Intercept and random slopes. In addition to the 
random Intercept, level 1 slopes (I.e., the coefficients of the level 1 predictors) can also be specified to be 
random. 

Random effects are the randomly varying parameters across higher level units. 

The contextual model Is a special case of the random-Intercept model or the random-coefficient model 
when both level 1 and level 2 predictor variables are Included. 

The intraclass correlation coefficient (ICC) Is used to measure the proportion of variance In the 
outcome variable explained by groups or clusters. It Is the ratio of the between-group variance to the 
total variance. 

The purpose of centering Is to make the results more Interpretative. By subtracting the mean of a 
predictor variable from each value, we obtain a meaningful zero for the predictor variable. 

The unconditional means model or the null model Is known as the one-way random-effects ANOVA. 
Neither level 1 nor level 2 predictor variables are Included In the model. 

Exercises 
Use the ELS:2002 data available at https://edge.sagepub.com/liu1e for the following problems. The 
following variables are used for the multilevel modeling, 

mathach: mathematics IRT scores of high-school students 
gender: gender (1 = female; 0 = male] 
byses: socioeconomic status composite for base-year data. 
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We will conduct a study investigating the relationships between students' math achievement and the two 
student-level predictors. The outcome variable is mathach, and the predictor variables are gender and 
byses. The multilevel modeling for the continuous response variable will be used for data analysis. 
Answer the following questions or perform the following analyses: 

1. Fit an unconditional model and obtain the between-group variance. Compute the ICC. What does it 
tell us? 

2. Fit a two-level, random-intercept model with a random intercept and two student-level predictor 
variables gender and byses. Use the grand-mean centering for byses before fitting the model. 

3. Interpret the fixed effects of the two predictor variables. 

4. Conduct a likelihood ratio test comparing the random-intercept model and the unconditional model. 
Interpret the results. 


