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LOGISTIC REGRESSION FOR
BINARY DATA

OB IE@T S OF THIS CHAPTER

This chapter introduces logistic regression models for binary data. It introduces concepts
of odds, odds ratio, and goodness-of-fit statistics of the model; describes how to test the
significance of predictors; and shows how to interpret parameter estimates. Following the
description of data, two logistic regression models with the g1lm () function are illustrated
with step-by-step instructions. R commands and output are explained in detail. In
addition, probit regression with R is also introduced. The focus of this chapter is on
fitting binary logistic regression models using R, as well as on interpreting and presenting
the results. After reading this chapter, you should be able to:

e Determine when a logistic regression model is used.

e Conduct logistic regression using R.

e Interpret the output.

e Interpret the model in terms of odds ratios.

e Interpret the marginal effects

e Compute and plot the predicted probabilities.

e Compare models using the likelihood ratio test and other fit statistics.
e Present the results in publication-quality tables.

e Write the results for publication.
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3.1 LOGISTIC REGRESSION MODELS:
AN INTRODUCTION

In multiple linear regression, a set of independent variables is used to predict a
continuous outcome variable. In this chapter, logistic regression models are introduced
for the analysis of dichotomous response variables with two categories.

Research examples include binary response variables such as life satisfaction (Hoffmann,
2016), having a fracture or not (Hosmer et al., 2013), gun ownership (Kaufman, 2019),
computer use (Menard, 2010), and skipping school or not (Smithson & Merkle, 2014).
These binary response variables have two categories: having an event or not having an
event. They are normally coded as 1 for having an event and 0 for not having an event.

We can use multiple linear regression as a preliminary method to estimate a binary
outcome variable. The method is referred to as the linear probability model. Due to its
simplicity in computation and easy interpretation as with the linear regression model, the
linear probability model is still popular in economics. However, this model has several
drawbacks because using multiple regression with the ordinary least squares method to
estimate a binary response variable violates the assumptions of normality, homoscedas-
ticity, and the linear relationship between the dependent variable and independent var-
iables. First, in multiple linear regression, we assume that the dependent variable has a
normal distribution. When the dependent variable is binary, it has a Bernoulli distri-
bution, which is not a normal distribution. Second, the homoscedasticity assumption
suggests that the error variances of the dependent variable are the same across each value
of the independent variables. This assumption is violated because the error variances
depend on the values of the predictor variables and vary across them, which is referred to
as heteroscedasticity. Heteroscedasticity may lead to biased standard errors of the esti-
mates and invalid statistical inference. Third, multiple linear regression also assumes that
the relationship between the dependent variable and independent variables is linear.
When the dependent variable is dichotomous, the relationship between this variable and
an independent variable is a nonlinear, S-shaped curve, which can be easily seen if we
draw a scatterplot showing the relationship between the dichotomous dependent variable
and the independent variable. In addition, we may see the predicted values of the
dependent variable are out of the range of 0 and 1. In other words, the estimated values of
the outcome variable may be negative (i.e., smaller than 0) or larger than 1. These values
are nonsensical since they are the predicted probabilities from the independent variables.
Therefore, we should use the linear probability model with caution. If we do use this
model, the robust standard error approach should be used to adjust the standard errors to
obtain unbiased standard errors of the estimates.

3.1.1 Why Do We Need a Logistic Transformation?

As explained previously, if we use linear regression to estimate binary data, hetero-
scedasticity (i.e., unequal error variance) is present in the model and the predicted value
may have values less than 0 or larger than 1. To estimate the probability of success for
having an event, a logistic transformation logit(p) or a probit transformation probit(p)



Chapter 3 m Logistic Regression for Binary Data

can be used. A regression model with the logistic transformation is called the logistic
regression model, whereas a model with the probit transformation is called the probit
regression model. Both models produce similar results and use of either model is down
to the choice of researchers. This chapter introduces the binary logistic regression
models first and then the probit regression models.

The form of the simple logistic regression model can be expressed as follows:
logit(p) = a + BX

where p is the probability when the outcome variable equals 1, (Y = 1); logit(p) is the
logistic transformation of the probability of success or of an event occurrence; and on
the right side, « is the intercept and S is the logit regression coefficient.

This equation looks like that for simple linear regression. The noticeable difference is the
logistic transformation on the left side of logistic regression. Instead of directly estimating
the dependent variable, we estimate the logistic transformation (i.e., logit) of the prob-
ability of a success, which is also known as the logarithm of the odds or “log odds.” Odds
are the ratio of the probability of success to the probability of failure. The transformation
between probabilities and odds will be introduced in detail in the next section. Therefore,
in simple logistic regression, we estimate the relationship between an independent
variable and the binary outcome variable on a scale of the logit or log odds. In other
words, the relationship between the predictor variable X and the logit of the outcome
(i.e., the logit transformation of the probability when the outcome variable ¥ = 1) is
linear. The logit of the outcome logit(p) can be easily transformed back to the probability
of the outcome 2(Y' = 1) since the logit is the natural logarithm of the odds or log odds.

Since logit(p) is In(odds), which is expressed as In I—LL;, the form of the simple logistic
regression can also be rewritten as:

I ARIE
Ing= = a+pX (3.1)

where In is the natural logarithm. For simplicity, we read “In(odds)” log odds or log of
the odds.

When the probability (p) varies from 0 to 1, the log odds or logit will vary from
negative infinity to positive infinity.

In multiple logistic regression, we have more than one predictor variable. The following
is the form of the multiple logistic regression model:

(%)
1—p(x)

1n = +BIX1 +BZX2 5 . +BFX:D (32)

where X, X5, ..., X, are the predictor variables and B;, B, ..., By are the logit
coefficients of these predictors. This equation can be also expressed as:

logitlp(x)] = a+ B, X1 + B, X + ... + By Xo (3.3)
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3.1.2 Probabilities, Odds, and Odds Ratios

Just as the mean and standard deviation are the cornerstone for the descriptive statistics
and linear models, probabilities, odds, and odds ratios are the key concepts for logistic
regression models. Probability is the chance of success or of having an event occur. It
can be expressed as a proportion. It equals the frequency of success or of having an
event divided by the total number of observations or events. Probabilities range from
0 to 1. When probability is 0, it means that the chance of success is 0 or that there is no
chance an event will occur. When probability is 1, it means that the chance of success is
certain.

If p is the probability of success or having an event, then the probability of failure or of
not having an event is 1 — p since these two probabilities are complementary. The sum
of all possible probabilities equals 1.

The odds are the ratio of two probabilities, the probability of success or of having an event
(») to the probability of failure or of not having an event (1 — p). Since p = P(Y = 1)
and 1 — p = P(Y = 0), the odds can be expressed as follows.

PY=1) p

Odds:P(Y:O)_ 1-p

Since the probability p varies from 0 to 1, the odds vary from 0 to positive infinity.
With the increase of the probability of success or of having an event, the odds also get
larger. Let us see three examples:

When p = 0.1, odds = 0.1/(1—0.1) = 0.11.
When p = 0.5, odds = 0.5/(1—0.5) = 1.00.
When p = 0.1, odds = 0.1/(1—0.1) = 9.00.

The preceding examples focus on the odds of having an event. What are the odds of not
having that event? When the odds of having an event = 99, the odds of not having an
event = 1/99 = 0.01 since they are just the multiplicative odds or the reciprocal of the
odds of having an event. This is an important property of odds. It is useful when we
compare different categories for the odds in various ordinal logistic regression models in
the following chapters.

The examples show us how to compute odds if we know the probability of success or of
having an event. But if we know the odds of success or of having an event, can we
compute the probability of success or of having an event? This backward trans-
formation is also easy. Since odds=tZ-, with a simple transformation, we get

?
p== j’rdfj T~ In other words, the probability of success or of having an event equals the

odds divided by (1 + odds).

For example, the command table (healthy, wrkfull) produces a two-way
cross-tabulation table of two binary variables, the health status and working full-time.
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The health status has two categories with 1 = good health and 0 = not good health;
the working full-time is coded as full-time and not.

> tab <- table (healthy, wrkfull)
> tab
wrkfull
healthy 0 1
0 363 182
1 635 693

> ftable (tab)

wrkfull 0 i
healthy
0 363 182
1 635 693

> addmargins (tab)

wrkfull
healthy 0 1 Sum
0 363 182 545
1 635 693 1328
Sum 998 875 1873

Since the probability of success or of having an event is a ratio of the frequency of
success or of having an event to the total observations, the probability of having good
health P(healthy = 1) = 1,328/1,873 = .709. The probability of not having good
health P(healthy = 0) = 545/1,873 = .291. Therefore, overall, the odds of having
good health = P(healthy = 1)/P(healthy = 0) = .709/.291 = 2.436.

Next, let us compute the odds of having good health for not working full-time.

To compute the probability of having good health for people who are currently not
working full-time, we look at the ratio of the frequency of people with good health who
are not working full-time to the total frequency of people who are not working full-
time: P(healthy =1 | not full-time work) = 635/998 = .636.

The probability of having poor health for people who do not work full-time P(healthy =
0 | not full-time work) = 363/998 = .364.

For people who do not work full-time, the odds of having good health = P(healthy = 1
| not full-time work)/P(healthy = 0 | not full-time work) = .636/.364= 1.747.

For full-time work, the odds of having good health = P(healthy =1 | full-time work)/
P(healthy = 0 | full-time work). Since P(healthy = 1 | full-time work) = 693/875 =
.792 and P(healthy = 0 | full-time work) = 182/875 = .208, the odds of having good
health for the people who work full-time = .792/(1 — .792) = 3.808.
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3.1.3 Transformation Among Probabilities, Odds, and Log Odds
in Logistic Regression

Forward Transformation

If we know the probability of success or of having an event, the odds of success are just
the probability of success divided by the probability of failure. By taking the natural

logarithm of odds, we get log odds or logit. Table 3.1 presents the forward trans-
formation from probabilities to odds to log odds.

TABLE 31 @ Forward Transformation From Probabilities to Odds to

Log Odds

Forward ln+£5 7

Backward Transformation

If we know the logit, since it is the natural logarithm of the odds or log odds, then the
odds are the antilogarithm. In other words, the odds of success can be obtained by
taking the exponential of the logit. To transform the odds back to the probability of
success, we divide the odds by 1 plus the odds. The backward transformation is dis-
played in Table 3.2.

TABLE 3.2 @ Backward Transformation From Log Odds to Odds

to Probabilities

Backward Logit(p) or tn2; Odds = exp llogit) p =388

0dds Ratio

What is an odds ratio (OR)? It is just a ratio of two odds. Since the odds of having good
health for the people who work full-time are 3.808 and the odds of having good health
for not working full-time are 1.747, the ratio of the odds for working full-time to the
odds for not working full-time = 3.808/1.747 = 2.180. In other words, the odds
of having good health for working full-time are 2.180 times the odds for not working
full-time.

When OR > 1, the odds of success or of having an event for one group are larger than
the odds for the other group. For example, OR = 2 indicates the odds of success for
one group are two times the odds for the other group.
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When OR < 1, the odds in one group are less than the odds in the other group. For
example, OR = 0.5 indicates that the odds for one group are 0.5 times the odds for the
other group. In other words, the odds for the second group are twice the odds for the
first group. When OR is less than 1, we can take the inverse of it and make it more
interpretable.

When OR = 1, the odds for one group are the same as the ones for the other group.

3.1.4 Bernoulli Distributions, the Likelihood Function, and
Maximum Likelihood Estimation

Bernoulli Distributions

When a discrete random variable is a binary outcome variable with 1 for having an
event or success and 0 for not having an event or failure, it follows a Bernoulli dis-
tribution. When Y = 1, the probability of success or of having an event, p = (Y = 1);
when ¥ = 0, the probability of failure or of not having an event, 1 — p = P(Y = 0).
The probability function, also called the probability mass function (PMF), for Ber-
noulli distributions is expressed as:

P(Y =y) =p(1-p)""’ (3.4)

where y can be either 1 or 0.

For each observation, we add subscripts to the equation as follows.
P(Y =y) =2(1-p) " 3.5)

where y; can be either 1 or 0.

With the Bernoulli probability function or PMF, we can obtain the probability at each
value of the discrete random variable. For all the observations in the sample, you can
obtain the joint probability function by multiplying the probability function of each
independent observation as follows.

n ; 1— i
P(Y =y, 32 o ) = TLAF(L=2) 7 (3.6)
where [] is the product term for the joint probability.

The Likelihood Function

By reparametrizing the function above, we obtain the likelihood function.
Lpiy) = Uz (=p) " (3.7)

where L(p; y) is the likelihood function, which is the function of the unknown
parameter p given the observed data y. The likelihood function is not the same as the
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probability function, although both equations on the right-hand side look the same. In
the likelihood function, the parameter is unknown and needs to be estimated, whereas
in the probability function we use the known parameter to obtain probabilities at
different values of the discrete random variable. The likelihood function is often
expressed as the form of the log likelihood function by taking the natural log of the
function in Equation 3.7, so we can work on addition rather than multiplication of the
function of individual observations.

The log likelihood function for the Bernoulli distribution can be expressed as:
In[Z(p; y)] = Z {rilnpi+ (1-3)n(1-p)} (3.8)

Since (1—y;)In(1 —p;) =In(1 — ;) —yin(1 — p;), the equation above can be

rewritten as:

In[Z(p;y)] = gl{y,-lnp,-+ln(l —p,-) —yiln(l —-p,-)} = ;1 {_y,-lnll_’_ipi+ln(l —p,-)}
(3.8b)

If we define /p; y) = In[L(p; y)], then the log likelihood function is expressed as:

1(p;) i {y,ln = +In(1 —p,)} (3.9)

Maximum Likelihood Estimation

We use maximum likelihood estimation to estimate the unknown parameter by
maximizing the likelihood in the function above. In other words, we look for the value
of the parameter p which makes the log likelihood value / the largest. If we find that
estimated value of the parameter p, then that value is the maximum likelihood estimate
that maximizes the likelihood of observing the data.

Let us see an example of the sample data with 10 Bernoulli trials. The set of the sample
data includes the value of each observation y;, which is either 1 or 0

{1,0,0,1,0,1,0, 1, 1, 1}
The likelibood fincrion is
L(p;y) = p(1=p)(1 = p)p(1 = p)p(1 = p)ppp = p°(1 —p)"*
The log likelihood function is:

Lp;y) = In[p°(1 —p)4] = 6lnp + 4In(1 — p)
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To use maximum likelihood estimation to estimate the unknown parameter p, we take
the derivative of the log likelihood function /(p; y) with respect to p, set it to 0, and find
the solution to the equation.

d d 4
d—Pl — Z;[Glnp+4ln(] )] = —_—

1=p

=0

S N

Therefore, we obtain the estimated p or p =2 = 2

The 5 value is the maximum likelihood estimate of the parameter p. With = 2, the log
likelihood function /p; y) has its maximum value. In other words, among all the possible
values for the parameter p, the estimated p = 2 is the maximum likelihood estimate

which makes the sample data with 10 Bernoulli trials above to be the most likely.

Similarly, in simple logistic regression, we use maximum likelihood estimation to
estimate the parameter, the logit coefficient B. We take the first derivative of the log
likelihood function AB; y, x) with respect to the coefficient 3, set it to 0, and solve. To
estimate the standard error of the coefficient, we take the second derivative of the log
likelihood function with respect to the coefficient to obtain the Hessian matrix. The
variance—covariance matrix of the coefficient is just the negative inverse Hessian matrix.
Recall that in simple logistic regression, we estimate the relationship between an
independent variable and the binary outcome variable on a scale of the logit or log odds
and the probability of the outcome P(Y = 1) is conditional on the values of the
predictor variable. Maximum likelihood estimation of the coefficient is far more
complex than the example demonstrated above. Technical detail of maximum likeli-
hood estimation is beyond the scope of this book; interested readers should refer to
Hilbe (2009) for more detail.

The Binomial Distribution

The Bernoulli distribution is a special case of the binomial distribution with one trial
for each individual. When we count the number of successes for the total trials, the
discrete random variable follows a binomial distribution. With % successes in 7 trials
with the success probability p, the binomial distribution is expressed as:

P(Y =k) = (Z)Pk(l =g (3.10)

where ( ) is the binomial coefficient and is read as “z choose £.” It gives us the
number of ways we have £ successes in 7 trials.

n n!
(é) CEDT

where 7! is 7 factorial or the factorial of 7. #!= n*(n — 1) ... 2*1.
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The log likelihood function for the binomial distribution is expressed as:

1(p; y; n) = Z{y,-lnlf_)ip +n,~ln(1 —pi)+ln<z>} (3.11)

i=1 i
Since ln( n) is a constant, when 7 = 1, the log likelihood function for the binomial
distribution is the same as the log likelihood function for the Bernoulli distribution; so
is the estimate by maximum likelihood estimation.

3.1.5 Goodness-of-Fit Statistics

To assess whether a model fits the data well, we normally look at several measures of fit
statistics rather than at a single measure. The deviance, log likelihood ratio test, pseudo
R?, AIC, and BIC statistics are introduced next.

Deviance

Deviance is one of the goodness-of-fit statistics used in the logistic regression. It
compares the currently fitted model and the saturated model. It is defined as —2 times
the difference in log likelihood between these two models, which can be expressed as —
2(log likelihood of the current model — log likelihood of the saturated model). The
saturated model is the model that fits the data perfectly.

In binary logistic regression, the saturated model estimates one parameter for each
observation so the number of parameters equals the number of sample size. Its likeli-
hood of fitting the data is 1, so the log likelihood of the saturated model equals In1,
which is 0. The expression of deviance can be simplified to —2 log likelihood of the
current model. It is often abbreviated as —2LL.

Deviance shows how well a model fits the data compared with a saturated model that fits
the data perfectly. If the discrepancy in log likelihood between the fitted model and the
saturated model is small, then this model has a good fit. On the contrary, if the deviance
is large, then the fitted model has a poor fit. Therefore, smaller deviance means a better
fit. In a linear regression model, we minimize the error variance and would like to see the
sum of squared residuals as small as possible. Similarly, in a logistic regression model, we
would like to minimize the deviance and would like to see the discrepancy in log like-
lihood between the fitted model and the saturated model as small as possible.

Model Comparisons Using the Deviance Difference or Likelihood
Ratio Test

Deviance is often used to compare nested models. Models are nested when more
constraints can be put on parameters in one model than in the other. One model is
called the reduced model, which contains less parameters, and the other is called the full
model, within which the reduced model is nested but has more parameters. In the
logistic regression, the reduced model has fewer variables than the full model, and the
former model is a subset of the latter. The difference in deviance between nested



Chapter 3 m Logistic Regression for Binary Data

models follows a chi-square distribution. The degrees of freedom of the distribution
equal the difference in the number of parameters between these two models. The
difference in deviance is often expressed as G = Deviance for the reduced model —
Deviance for the full model or as follows: G = Dgeduced — Drull-

This test is also known as the likelihood ratio test since the difference in deviance is the
difference in —2LL, which can be expressed as a ratio of likelihood in logarithm.

LikelihoodRgeduce
G = — 2lnw;d_—_d = T 2LLReduced - ( - 2LLFull) == DReduced - DFull
Likelihoodpy
(3.12)
where DReduccd = —2LLReduccd and DFull = _ZLLFull-

In simple logistic regression with only one independent variable, the likelihood ratio
test compares the deviance between the null model with only the intercept (Dy) and the
model with one independent variable (D,,). The likelihood ratio test, G = —2LL, —
(—2LL,) = Dy — D, If the likelihood ratio chi-square test is significant, then we
reject the null hypothesis and conclude that the model with one independent variable
fits the data better than the model with only the intercept (null model).

Predictor Selections Using the Likelihood Ratio Test

The likelihood ratio chi-square test can be used to test whether a predictor variable
contributes to the model by comparing the models with and without the variable. A
significant test means that the added variable contributes to the model. It is also
useful for model developing. We can build a series of nested models from a simple
model with one predictor to more complex models with multiple predictors. The
likelihood ratio chi-square test can be used to decide which model fits the data better
and whether the predictor variables should be kept in or removed from the model.

Pseudo R?

In linear regression models, the coefficient of determination, A2, is the index for the
model fit. It is a ratio of the variance explained by the model to the total variance. It
indicates how much variance in the dependent variable is accounted for by an inde-
pendent variable or a set of independent variables. Analogous to R? in the linear
regression, several pseudo R* are used in logistic regression (Hardin & Hilbe, 2018;
Long & Freese, 2014; Menard, 2010). However, the interpretation of these pseudo R?
in logistic regression is different from the interpretation of & in the linear regression. In
addition, there is no consensus as to which of the pseudo &2 measures is the best. Table
3.3 displays three major pseudo R? measures and their formulas.

1. The Likelihood Ratio R?
The likelihood ratio R?, written as R?, is also known as McFadden’s B2, or the
McFadden R2. It is the reduction in deviance from the fitted model (D)) to
the null model that only contains the intercept (D). It is expressed as:
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D —2LL
R=1-—"=1- =
L Dy —2LL,

(3.13)

when model deviance equals —2 times log likelihood (D = —2LL), the likelihood ratio
R? can also be the reduction in log likelihood between the fitted model and the null
model. It is expressed as:

—2ll, _ Ly

R=1-—=1-—7=
E —2LL, LLy

(3.14)

2. Cox and Snell’s R?
Cox and Snell’s R or the Cox and Snell R?, written as RZ; , is also known as
the maximum likelihood R2. It is based on the likelihood function of the
fitted model (L) and the null model, which only contains the intercept (Z).
It is expressed as:

T 2/n
R, (Z':j) (3.15)

where 7 is the total number of observations.

3. Nagelkerke’s R?
This is also called Cragg and Uhler’s R2. It is an adjustment to the Cox and
Snell R by dividing the maximum value of the Cox and Snell 2. It is
expressed as:

RI%I . Rde / maximum RI%AL (3.16)

4. Other Pseudo R?> Measures
Other pseudo R? measures include the adjusted McFadden’s B2, McKelvey
and Zavoina’s R?, Efron’s R?, Tjur’s R?, and the Count and adjusted Count
R?. Refer to Hardin and Hilbe (2018) and Long and Freese (2014) for
detailed introductions to pseudo R? measures.

TABLE 3.3 @ Three Major Pseudo R? Measures

Likelihood ratio R? (McFadden’s R?) RZ=1 _%Zl: 1 :2&?
Cox and Snell’'s R? (maximum likelihood R/ \2h

Nagelkerke's R? (Cragg and Uhler’'s R?) 2/n
- . R% = R%, /maximum R, ={1— (ﬁ})} /(1 —Lg)?"
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Information Criteria Indices: AIC and BIC

The likelihood ratio tests are used for comparisons between nested models. But how do
you compare models if they are not nested (e.g., if two models contain different sets of
independent variables or if one model has more missing values so the sample size is
different between the two models)? To compare non-nested models, the Akaike
information criterion (AIC) (Akaike, 1974) and the Bayesian information criterion
(BIC) (Schwarz, 1978) statistics are commonly used. Both statistics are based on the
deviance statistics and can be seen as an adjustment to the deviance. Just like the
likelihood ratio test, they can also be used to compare nested models. Table 3.4 pre-
sents formulas for the AIC and BIC statistics.

The AIC adjusts or penalizes the deviance by the number of predictors:
AIC = —2(LLy, — k) = Dn +2k (3.17)

where £ is the number of parameters (the number of independent variables plus the
intercept) and —2LL,, or D, is the deviance of the fitted model.

Remember that we would like to see smaller deviance; this is still true for the AIC
statistic. A smaller AIC means a better fit of the model.

The BIC adjusts the deviance by its degrees of freedom and the sample size:

BIC = —2LLy +1In(7) X # = Dy + In(n) X (3.18)

where £ is the number of parameters (the number of independent variables plus the
intercept), 7 is the number of the sample size, and D, is the deviance of the fitted
model. Similar to the AIC statistic, we also prefer a smaller BIC statistic.

The AIC and BIC can be used to compare both nested and non-nested models. When
comparing nested models, the BIC often leads to the selection of more parsimonious
models, which are simpler models with few parameters. The BIC statistic has a larger
penalty term in the form than that in the AIC statistic, so if the focus is to choose a
more parsimonious model, the BIC is normally preferred.

TABLE 3.4 @ Information Criteria Indices: AIC and BIC Statistics

Information Criteria Indices | Formulas

AIC = 2(LLy — k) =D + 2k

SBIG e i) k= B SRk e

3.1.6 Testing Significance of Predictors

To test the statistical significance of each predictor, the Wald test is used. It is
computed as a ratio of the parameter estimate for each predictor variable in the model
to its corresponding standard error.
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Wald z = L( (3.19)

SE(B)

where f3 is the estimated logit coefficient and SE(B) is the standard error. Statistical
software packages report either the univariate Wald z statistic, which follows a standard
normal distribution, or a Wald chi-square test statistic, z°, which follows a chi-square
distribution. The null hypothesis is that the coefficient of each predictor variable is 0.
Rejection of the null hypothesis indicates that the effect of a particular predictor var-
iable is significant.

Confidence intervals for the parameter B = B iz*SE([%)

where B is the estimated logit coefficient for a predictor, z is the z-score from a normal
distribution for the chosen confidence interval, and SE(B) is the standard error. For
the 95% confidence intervals, z = 1.96. Therefore, 95% confidence intervals for the
parameter 8 = 3 *+ 1.96+SE(B).

Another way to test the significance of predictors is the likelihood ratio test, which
compares —2LL of different models. With only one additional predictor added to the
existing model, the difference in deviance between the nested models has a chi-square
distribution with one degree of freedom (i.e., the degree of freedom equals the dif-
ference between the number of predictors). A significant likelihood ratio test means
that the variable is a significant predictor in the model. For a univariate test of a single
predictor, the results of the Wald test and the likelihood ratio test are equivalent. The
likelihood ratio test can also be used to test the contribution of two or more variables
when they are added to the current model. A significant likelihood ratio test for the
nested models means that a set of variables overall makes a significant contribution to
the model.

3.1.7 Interpretation of Model Parameter Estimates in
Logistic Regression

Probabilities, Odds, and Odds Ratios in Logistic Regression

In Section 3.1.3, the transformation from probabilities to odds and to odds ratios was
introduced. Let us take a look at their transformation in logistic regression. In the
simple logistic regression, In72== a + BX, where p is the probability when ¥ = 1.
The estimated coefficient is the logit coefficient, which is the coefficient on the scale of
logit or log odds. In the simple logistic regression, the outcome variable is dichotomous
with values of 1 and 0. We estimate the relationship between the predictor variable and
the logit function of the probability that ¥ = 1, the log odds.

Exponentiating both sides of the equation, we get the odds of success or of having an
event:

Odds(Y = 1) = exp(a + BX)
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If the independent variable X is a categorical variable with the values of 0 and 1, what
are the odds of success or of having an event?

When X = 0, odds (Y = 1) = exp(a), which is the exponentiated intercept.

When X = 1, odds (¥ = 1) = exp(a + B), which is the exponentiated sum of
intercept and logit coefficient.

The odds ratio of the group 1 (X = 1) to the group 2 (X = 0):

exp(a +B) _ exp(a) X exp(B)

OR =~ (@) exp(@)

= exp(B) (3.20)

This is the simple case for a one-unit increase in an independent variable (e.g., from
0 to 1 in the previous example); the change in the odds is the odds ratio, which is the
exponentiated logit coefficient. When the independent variable is continuous, for a
one-unit increase from any value of x to the value of (x + 1), the change in the odds is
still the exponentiated logit coefficient. Since the 95% confidence intervals for the

parameter 8= * 1.96%SE(B), by exponentiating this form we obtain the corre-
sponding confidence intervals for the odds ratio, exp[8 * 1.96+SE(B)].

When the logit coefficient is positive, it indicates the relationship between the predictor
variable and the logit function of the probability is positive. By exponentiating the logit
coefficient, we get the odds ratio, which is larger than 1. This means that the odds of
success or of having an event increases for a one-unit increase in the predictor variable.

When the logit coefficient is negative, it indicates that the relationship between the
predictor variable and the logit function is negative. The exponentiated coefficient, the
odds ratio, is less than 1. This means that the odds of success or of having an event
decreases for a one-unit increase in the predictor variable.

When the logit coefficient equals 0, the odds ratio equals 1. This indicates that there is
no relationship between the predictor and the odds of success.

Interpreting an Odds Ratio as a Percentage Change in Odds

Another way of interpreting odds ratios is the percentage change in odds. It can be
calculated by using (odds ratio — 1) X 100%. A positive percentage change in odds
indicates there is an increase in the odds, whereas a negative percentage change cor-
responds to a decrease in the odds. A zero-percentage change indicates no change in
odds at all. In other words, the predictor variable does not influence the odds of success.

For example, if an OR for a predictor variable equals 1.2, then the percentage change in
the odds can be computed as follows: (1.2 — 1) X 100% = 20%. This indicates that
each one-unit increase in the predictor variable corresponds to an increase of 20% in
the odds of success.

In another example, if OR = .80, then the percentage change in the odds is (0.80 — 1) X
100% = —20%. Since the percentage change is negative, it indicates that for each one-
unit increase in the predictor variable, there is a decrease of 20% in the odds of success.
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Interpreting Coefficients in Terms of Predicted Probabilities

In addition to odds ratios, we can interpret logistic regression models in terms of
predicted probabilities or predictive margins. Recall that the logit is the natural loga-
rithm of the odds, or log odds, and the odds of success is obtained by taking the
exponential of the logit. By using the backward transformation method introduced
previously, we can easily transform the odds back to the probability of success. The
predicted probability can be calculated at specified values of a set of predictor variables.
When a combination of the values of the predictor variable changes, the predicted
probabilities are different.

Interpreting Marginal Effects as Changes in Predicted Probabilities

A marginal effect is a change in a response variable related to the change in an inde-
pendent variable. Mathematically, it is the partial derivative of the regression equation
with respect to an individual predictor variable in the model. In a simple linear
regression model, a marginal effect is the same as the regression coefficient. In logistic
regression, a marginal effect is a change in the predicted probability with a change in
the values of a predictor variable. When a predictor variable is binary with the values of
1 and 0, the marginal effect is a discrete change in the predicted probability; when a
predictor variable is continuous, the marginal effect is an instantaneous rate of change
in the predicted probability, which is a rate of change at a specific value of the predictor
variable rather than the two values for a binary predictor variable. Therefore, a marginal
effect for a continuous predictor variable in logistic regression is often an approximate
change in the predicted probability with a one-unit change, or strictly speaking, it is a
change in the predicted probability with a small change in that predictor variable. An
average marginal effect (AME) is the mean value of the marginal effects at each value of
a predictor variable. Marginal effects can be computed at means or at specified values of
predictor variables, which are referred to as marginal effects at means (MEM) or
marginal effects at representative values (MER), respectively.

We can also compute the predicted probabilities for a particular variable at given values.
These predicted probabilities are also called predictive margins or adjusted probabilities.
Changes in the predicted probabilities can be used to compute the marginal effects. For
example, when a predictor variable is binary with two categories, the difference between
the predicted probabilities is the marginal effect of that variable.

3.2 RESEARCH EXAMPLE AND DESCRIPTION
OF THE DATA AND SAMPLE

Research Problem and Questions: In this example, we are interested in investigating
whether the binary response variable, health status, can be predicted by four predictor
variables, marital status, years of education, age, and gender. The research question is as
follows: Which predictor variables are associated with the likelihood of having good
health? In other words, can health status be predicted by the four preceding variables?
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Description of the Data and Sample: The data for the following analyses were the
General Social Survey 2016 (GSS 2016). The following are the variables:

e healthy: the recoded variable of health (health status) with 1 = good
health and 0 = not good health

e wrkfull: working full-time with 1 = full-time and 0 = not full-time

e maritals: the recoded variable of marital (marital status) with 1 = currently
married and 0 = not currently married

e female: recoded variable of sex with 1 = female and 0 = male

e educ: the highest education.

3.3 GENERALIZED LINEAR MODELS AND THE
glm () FUNCTION

3.3.1 Generalized Linear Models and the glm () Function:
An Introduction

Generalized linear models extend the linear regression model when the response vari-
able is a noncontinuous variable, such as a binary, an ordinal, a nominal, or a count
variable. When the response variable is continuous, the linear regression model is a
special case of generalized linear models. In generalized linear models, the response
variable follows a distribution from the exponential family, such as a normal distri-
bution for a continuous response variable, a binomial distribution for a binary variable,
and a Poisson distribution for a count variable. There are three common components in
the framework of generalized linear models: the random component, the systematic
component, and the link function.

First, a probability distribution of the response variable Yis the random component of
the model. For example, the binomial distribution of a binary response variable is the
random component in a logistic regression model.

Second, a generalized linear model also includes the systematic component, a linear
combination of the predictor variables, which is referred to as the linear predictor with
the form a + B.X; + BX; + ... + BX,. If we define the linear predictor as m (efa),
the systematic component can be expressed as the form: n = a + B1.X] + B X; + ...

+ BoX,.

Third, a generalized linear model has a component called the link function to connect
the linear predictor and the expected value E(Y) or the conditional mean u (mu) of the
response variable. The link function is written as g(u), which links the linear predictor
7 and the conditional mean u of the response variable. For example, the identity link,
g(w) = u, is used for linear regression models, the logit link, g(u) = In(u/1—p), is
used for logistic regression models, and the natural log link, g(u) = In(u), is used for
Poisson regression and negative binomial regression models. These link functions are
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the most commonly used canonical links which connect the linear predictor 17 with the
natural parameter, the conditional mean . Other link functions, such as the probit
function and the complementary log-log, can also be used in models for binary, ordinal,
and nominal response variables. Table 3.5 provides the types of outcome variables, the
probability distributions, the link functions with names, and the corresponding models
which are covered in this book.

TABLE 3.5 @ Outcome Variables, Distributions, Link Functions, Function Names, and the
Corresponding Models

Link Function

Outcome Variable | Distribution Link Function Name
Continuous Gaussian o identity Linear regression
Binary 'B‘eir:npul[i or ‘-lkn(»p'ﬂ % p,) ldgit ' , ’,L‘og‘istic regression
Binomial . 0 s ' ,
Ordinal Multinomial (RS logit Ordinal logistic regression
el [proportional odds model)
Ordinal Mul{inomial (B logit Ordinal logistic regression
e = : (continuation ratio odds model)
Ordinal Multinomial in[POzit logit Ordinal logistic regression
P=h (adjacent categories model)
Nominal Multmomml - 'ln(QY: 9) o logit : . : aMuFtiiyi:'uOmial logistic regression
Count Poisson In(w) natural log Poisson regression
Count ' Negati\ylyey~ "ln o natural ldg ~ Negative binomial regression
bipomial - o o\l e ~ l[canonical
e [canonical form) ; -
Count Negative In(u) natural log Negative binomial (NB-2)
binomial

3.3.2 The glm() Function

The glm () function is normally used to fit generalized linear models where a binary
logistic regression model belongs. The model formula syntax of glm () is similar to
that of 1m () introduced in the last chapter but includes the additional family=
argument for the probability distribution of the outcome variable and the 1ink=
argument for the link function. The model formula in g1lm () specifies the dependent
variable and the predictor variable(s), which are separated by the tilde (~). When there
are multiple predictor variables in the formula, they are connected by plus (+) symbols.
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In addition to the model formula, next, we also need to specify the probability dis-
tribution of the outcome variable with the family= argument. For example, the
family = binomial argument is used for a binary outcome variable in logistic
regression and family = poisson is specified for a count variable in Poisson
regression. Other families include Gaussian, Gamma, inverse Gaussian, quasi, quasi-
Poisson, and quasi-binomial. We also need to specify the link function associated with
the family argument. For example, (1ink = “logit”) stands for the logit link
and (link = “log”) is used for the log link. Several link functions can be used in
the binomial family. In this chapter, we will only focus on the logit and probit links.
Please also note that the current glm () function cannot be used to fit models for
ordinal and nominal response variables, so other packages will be introduced in the
following chapters.

Most extractor functions for the 1m () function can also be used for the glm ()
function. We can use the summary () function to display the summary results of the
fitted model, use the coef () function to extract the coefficients, use the confint ()
function to request the confidence intervals of the coefficients, and use the anova ()
function to conduct the likelihood ratio test for model comparison. In addition, we can
the exp (coef () ) function to obtain the odds ratios. Other useful extractor func-
tions include the fitted () function for creating the fitted values, the resid-
uals () function for the residual values, the predict () function for the predicted
values of an outcome variable, the AIC () function for the AIC statistic, and the
plot () function for diagnostic plots.

3.4 SIMPLE LOGISTIC REGRESSION USING R

3.4.1 Simple Logistic Regression: R Syntax

In simple logistic regression, there is only one binary dependent variable with values of 1
and 0 and one independent variable, which can be either categorical or continuous. The
command glm(y ~ x, family = binomial (1ink = “logit”)) tellsRtofita
simple logistic regression model predicting the binary dependent variable y with an inde-
pendent variable x by specifying the binomial family and the logit link function. For more
details on how to use this command, type help (glm) in the command prompt.

In the following example, the command glm (healthy ~ wrkfull, data =
chp3.1lr, family = binomial (1ink = "logit")) tells R to predict the
dependent variable healthy from the independent variable wrkfull. The fitted
model is named LR. 1. The output is shown by the summary (LR.1) command.
> # Simple logistic regression

> LR.1 <- glm(healthy ~ wrkfull, data = chp3.1lr, family = binomial (link = "logit"))
> summary (LR.1)

{ Call:
? glm(formula = healthy ~ wrkfull, family = binomial (link = "logit"),
] data = chp2.1lr)
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Deviance Residuals:

Min 10 Median 3Q Max
-1.7721 -1.4222 0.6829 0.9509 0.9509
Coefficients:
Estimate Std. Error z value Pr(>1|z])
(Intercept) 0.5592 0.0658 8.499 < 2e-16 ***
wrkfull 0.7778 0.1061 7.328 2.34e-13 ***

Signifiicodess:: 0 V***u000 MAREIQUOT MR 0405 N 0L E A

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2258.9 on 1872 degrees of freedom
Residual deviance: 2203.2 on 1871 degrees of freedom
AIC: 2207.2

Number of Fisher Scoring iterations: 4

3.4.2 Interpreting R Output

In the R output for simple logistic regression, the first part is the call, which shows the
R syntax for the model. The second part shows the deviance residuals, which are similar
to the residuals in a linear regression model. The minimum, first quarter, median, third
quarter, and maximum values of the deviance residuals are shown here. The third part
shows the coefficients table including the parameter estimates for the predictor variable
and the intercept, their standard errors, the Wald z statistics, and the associated p
values. The null hypothesis for the Wald test is that the coefficient of the predictor
variable is 0, and the alternative hypothesis is that the coefficient of the predictor
variable is significantly different from 0.

The Wald z statistic equals the parameter estimate divided by its standard error. For
the predictor variable wrkfull, Wald z = .778/.106 = 7.328. Some other sta-
tistical software packages report the Wald chi-square test statistic, which is the
squared Wald z statistic. The associated p value, Pr(>|z|) < .001, so we
rejected the null hypothesis. The rejection of the null hypothesis indicates that the
predictor variable wrkfull is a significant predictor of the dependent variable
healthy.

Finally, the fourth part of the output shows the fit statistics including the null deviance,
the residual deviance, and the AIC. The null deviance is the deviance for the null model
with the intercept only. The residual deviance is the deviance for the fitted model,
which is defined as —2(log likelihood of the current model — log likelihood of the
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saturated model). The difference between the residual deviance and the null deviance
can be used to evaluate the significance of the fitted model. Please note that the residual
deviance is not the same as the deviance residual. The deviance residual is the residual
for each case, whereas the residual deviance is the total of the deviance residuals
multiplied by 2.

3.4.3 Interpreting the Coefficients

The logit coefficients can also be obtained using coef (LR.1) and their confident
intervals can be obtained with confint (LR.1).

|

| > coef (LR.1)
! (Intercept) wrkfull
0.5592222 0.7778011

> confint (LR. 1)
Waiting for profiling to be done...

2.5% 97.5 %
(Intercept) 0.4309678 0.6889906
wrkfull 0.5709823 0.9872410

Since the estimated intercept and coefficient are .559 and .778, respectively, the simple
logistic regression model could be expressed as:

logit(p) = .559 +.778X

The regression coefficient of the wrkfull predictor is .778, which is also called the
logit coefficient since we estimate the relationship between the predictor variable and
the logit of the probability when the outcome variable healthy takes the value of 1.

The confint (LR.2) command produces the profile confidence intervals which are
based on the chi-square distribution of the likelihood ratio test statistic. We can also use
the confint.default (LR.2) command to obtain the standard confidence
intervals, which are based on the Wald test statistic.

| > confint.default(LR.1)
{ 2.5 % 97.5 %

| (Intercept)  0.4302568  0.6881876
wrkfull 0.5697574  0.9858449

The results of the profile confidence intervals and the standard confidence intervals look
similar. The profile confidence intervals are preferred when the sample size in the model
is small. We will use the confint () function throughout the book.
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3.4.4 Interpreting the Odds Ratio

When X = 0, the estimated logit(p) = .559. Since logit is log odds, exponentiating
.559 gives us the odds of having good health. The odds of having good health for
people who do not work full-time are exp(.559) = 1.749.

When X = 1, the estimated logit(p) = .559 + .778 = 1.337. So the odds of having
good health for people who work full-time are exp(1.337) = 3.808.

Odds ratio = 3.808/1.749 = 2.177, which is the ratio of odds of having good health
for working full-time to the odds for not working full-time.

If we directly exponentiate the logit coefficient exp(.778) = 2.177, then we get the
same odds ratio as earlier. You get the following output displaying the odds ratio if you
run the exp (coef (LR.1)) command. The corresponding confidence intervals can
be obtained using the exp (confint (LR.1)) command.

> exp (coef (LR.1))

(Intercept) wrkfull
1.749311 2.176681

> exp (confint (LR.1))
Waiting for profiling to be done...

2.5% 97.5'%
(Intercept) 1.538746 1.991704
wrkfull 1.770005 2.683820

Odds ratio = 2.177. It is interpreted as follows: For each one-unit increase in the
predictor variable, the odds of having good health increase by a factor of 2.177. Since
the predictor variable wrkfull is also a binary variable, it can also be interpreted as
the odds of having good health for the people who work full-time are 2.177 times the
odds of having good health for those who do not work full-time.

3.4.5 Interpreting the Pseudo R?

We use the nagelkerke () function in the rcompanion package (Mangiafico,
2021) to obtain the pseudo R? statistics. The rcompanion package needs to be
installed first by typing install.packages (“rcompanion”). We then load
it with library (rcompanion). The output produced by the nagelkerke
(LR.1) command is displayed as follows.

> # PseudoR2
> library (rcompanion)
> nagelkerke (LR.1)

, $ Models"

Model: "glm, healthy ~ wrkfull, binomial (link = \"logit\"), chp3.1lr"



Null: "glm, healthy ~ 1, binomial (link = \"logit\"), chp3.lr"

McFadden
Cox and Snell (ML)
Nagelkerke (Cragg and Uhler)

$Likelihood.ratio.test

{
|
!
|

$Number.of .observations

Model : 1873
Null 3 1873
$Messages

$Warnings
[1] "None"

$Pseudo.R.squared.for.model.vs.null

Pseudo.R.squared

Df.diff  LogLik.diff  Chisg
=i -27.86  55.72

[1] "Note: For models fit with REML, these statistics are based on refitting with ML"
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0.0246663
0.0293107
0.0418352

p.value
8.3585e-14

McFadden’s R = 0.0247. It is the likelihood ratio B2, which is normally written as R?.

R =1-

=l
—2LL,

1—(2,203.2/2,258.9) = 0.0247

> 1-2203.2/2258.9
[1] 0.02465802

The same results can be computed using the equations for the pseudo R introduced in
the previous section. In the R syntax below, we first fit a null model with the intercept
only and name the model object LR. 0. We also create the following objects. LLM is
the log-likelihood value for the single-predictor model and LLO is the log-likelihood
value for the null model. In addition, McFadden is the object name for the McFadden
R?, CS for the Cox and Snell R?, and NG for the Nagelkerke R2.
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> LR.0 <- glm(healthy ~ 1, data = chp3.1lr, family = binomial (link = "logit"))
> LLM <- logLik (LR.1)

> LLO <- logLik (LR.O)

> McFadden <- 1- (LLM/LLO)

> McFadden

’log Lik.’ 0.02466634 (df=2)

> CS <- l-exp (2* (LLO-LLM) /1873)
> CS

’log Lik.’ 0.02931066 (df=1)

> NG <- CS/ (1-exp (2*LL0/1873))
> NG

’log Lik.’ 0.0418352 (df=1)

The results of the three pseudo R* are the same as those produced by the nagel-
kerke () function.

3.4.6 AIC and BIC Statistics

AIC is reported by summary (LR.1). The AIC (LR.1) command also reports the
AIC statistic. The BIC (LR.1) command provides the BIC statistic.

{ >AIC(IR.1)
| 111 2207.209
> BIC(LR.1)
[1] 2218.28

In the output, AIC = 2,207.209. The same value can be easily derived if we use the
following equation:

AIC = —2(LLyp —#) = (Dp +2k) = 2,203.2+2X2 = 2,207.2
BIC in the output is 2,218.28. It can be calculated using this equation:
BIC = Dy, +1In(n) X £ = 2,203.2 +1n(1,873) X 2 = 2,218.27

The AIC and BIC statistics themselves do not indicate whether the model fits the data
well. They are useful for model comparison purposes, particularly when comparing
non-nested models. More details will be provided in the multiple logistic regression
section.

3.4.7 Testing the Overall Model Using the Likelihood Ratio Test

To test if the overall model is significant, we use the anova (LR.1, update (LR.1,
~1), test = "Chisq") command. The anova () function compares the deviance
statistics of the fited model LR. 1 and the null model using the chi-square test.
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> LR.1 <- glm(healthy ~ wrkfull, data = chp3.1r, family = binomial (1ink = "logit"))
{ > anova (LR.1, update (LR.1, ~1), test = "Chisqg")
| Analysis of Deviance Table |

Model 1: healthy ~ wrkfull |
Model 2: healthy ~ 1

Resid.Df Resid. Dev Df Deviance Pr (>Chi) |
il 1871 2203.2
2 1872 2258.9 -1 =55..72 8.358e-14 ***

Signif. codes: 0 “***/ 0,001 ‘**’ 0.01 “*’ 0.05'.” 0.1 "1

Deviance = 55. 72, which is the likelihood ratio chi-square test statistic and can be
written as LR x%l) = 55.72. It is the difference in the —2 log likelihood (—2LL) between
the current model, which contains the one predictor and the intercept, and the null or
empty model, which contains only the intercept. The deviance of the current model was
2,203.2 and that of the null model was 2,258.9. Therefore, the difference in deviance was
55.72, with 1 degree of freedom, which is the difference in the number of predictors
between these two models. Please note that the deviance is negative in the output since
there is a decrease in the residual deviance from the null model to the one-predictor model.

The null hypothesis of the likelihood ratio chi-square test is that the logit coefficient of
the predictor variable wrkfull is not significant or that the predictor variable does
not contribute to the model.

The alternative hypothesis is that the coeflicient of the predictor is significant in the
model or that it significantly contributes to the model.

The associated p value with the likelihood ratio chi-square test Prob (>chi) <
0.0001 indicates that the null hypothesis is rejected. Therefore, the overall model
with one predictor is significant.

3.5 MULTIPLE LOGISTIC REGRESSION
USING R

The multiple logistic regression model is simply an extension of the simple logistic
regression model when there are two or more predictor variables in the model. The
following equation is for the multiple logistic regression model:

2%

1 -P(x) =a +,31X1 +B2X2 = +BpXP (321)

where X;, X, ..., X, are the predictor variables and By, B;, ..., B, are the logit
coefficients of these predictors.
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The multiple logistic regression estimates the logit of the probability or log odds when
the outcome variable equals 1 given a set of predictors, which can be either categorical
or continuous. The odds of success or of having an event in multiple regression is the
ratio of probability of success to the probability of failure given a set of predictor
variables.

3.5.1 Interpretation of Model Parameter Estimates and Odds
Ratios in Multiple Logistic Regression

The estimated regression coefficients are the logit coefficients, which are the coefficients
on the scale of logit or log odds. The logit coefficient can be interpreted as the change in
the predicted logit ot the log odds for a one-unit increase in the predictor variable when
holding other predictors constant or controlling for the effects of other predictors.

The exponentiated logit coefficients are the odds ratios. The odds ratio of each pre-
dictor can be interpreted as the change in the odds for a one-unit change in the
dependent variable when holding other predictors constant.

When an odds ratio is larger than 1, the odds of success or of having an event increase
for a one-unit increase in the predictor variable when controlling for other predictors.

When an odds ratio is less than 1, the odds of success or of having an event decrease for
a one-unit increase in the predictor variable when controlling for other predictors.

When an odds ratio equals 1, there is no relationship between the predictor and the
odds of success when holding other variables constant.

3.5.2 Model Fitting Based on the Likelihood Ratio Test and
Information Criteria Statistics

Just like linear regression models, models in logistic regression can be fitted from a simple
logistic regression model to a more complex model to the full model. A baseline model can
be the starting point for model building. A series of nested models can be compared by
using the likelihood ratio test or the deviance difference test. Models are nested when one
model is a special case of the other. As explained in the Goodness-of-Fit Statistics section,
the difference in deviance between nested models has an approximately chi-square distri-
bution with the degrees of freedom equal to the difference in the number of parameters
between these two models. It is often expressed as G = deviance for the reduced model —
deviance for the full model or as Dgegyced — Drut If the likelihood ratio chi-square test or
the deviance test is significant, then we reject the null hypothesis and conclude that one
model fits the data better than the other model.

The result of the likelihood ratio test is valid when the competing models are fitted on
the same data. In real data analysis, it is common to see that the sample size varies
among the nested models. If there is a great difference between the sample sizes of fitted
models, for example, if some variables have more missing values, then the results are
questionable. Under this circumstance, two information criteria measures, the AIC and
BIC statistics, are more appropriate for model comparisons. They are commonly used
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to compare non-nested models. The smaller the AIC and BIC statistics, the berter fit
the model.

3.5.3 The glm() Function for Multiple Logistic Regression

We still use the g1lm () function for multiple logistic regression. In the model formula,
the dependent variable healthy and the four predictor variables are separated by the
tilde (~). The four predictor variables include wrkfull, maritals, female, and
educ, which are connected by plus (+) symbols. We also specify the data and the
family arguments.

In the following example, the glm(healthy ~ wrkfull + maritals +
female + educ, data = chp3.lr, family = binomial (link =
"logit")) command tells R to predict the dependent variable healthy from the
four independent variables. The fitted model is named LR. 2. The following output is
shown by the summary (LR.2) command.

> # Multiple logistic regression |
> LR.2 <- glm(healthy ~ wrkfull + maritals + female + educ, data = chp3.1lr, family = E
binomial (1ink = "logit")) |
> summary (LR.2) ;
f
i

Call:
glm(formula = healthy ~ wrkfull + maritals + female + educ, family = binomial (1ink =
"logit"),

data = chp3.1r)

Deviance Residuals:

i Min 10 Median 3Q Max

‘ #2:3201 -1.1877 0.6439 0.8652 1.7620

Coefficients:

f Estimate Std. Error z value Pr(>|zl)

(Intercept) -1.82016 0.26294 -6.922 4.45e-12 **x*

| wrkfull 0.65505 0.11112 5.895 3.74e-09 **x*

| maritals 0.36738 0.10943 3351 0.000787 *** |

| female 0.18217 0.10807 1.686 0.091868 . i
educ 0.16184 0.01881 8.605 < 2e-16 *** |

Signif. codes: 0 M**. 0,001 Y**/ 0,01 Y* 0,05 Y./ 0.1+ 1

(Dispersion parameter for binomial family taken to be 1)

i Null deviance: 2258.9 on 1872 degrees of freedom i
Residual deviance: 2103.4 on 1868 degrees of freedom
AIC: 2113.4

Number of Fisher Scoring iterations: 4

121



122

Categorical Data Analysis and Multilevel Modeling Using R

3.5.4 Interpreting R Output

In the R output for multiple logistic regression, the first part is the call, which shows the
R syntax for the model. The second part shows the minimum, first quarter, median,
third quarter, and maximum value of the deviance residuals. The third part shows the
coefficients table including the parameter estimates for the four predictor variables and
the intercept, their standard errors, the Wald z statistics, and the associated p values.

For the predictor variable wrkfull, Wald z = 5.895. The associated p value,
Pr(>|z|) < .001, so we rejected the null hypothesis. The rejection of the null
hypothesis indicates that the predictor variable wrkfull is a significant predictor
of the dependent variable healthy.

For the predictor variable maritals, Wald z = 3.357. The associated p value,
Pr(>|z|) < .001, so we rejected the null hypothesis. For the predictor variable
educ, the Wald z = 8.605. The associated p value, Pr (>|z|) < .001, so we also
reject the null hypothesis. Therefore, maritals and educ are significant predictors
of the dependent variable.

For the other new predictor variable female, the Wald z = 1.686. The associated p
value Pr (>|z|) = .092, so we fail to reject the null hypothesis and conclude that
there is no significant effect of female on the outcome variable. In other words, whether
a person is a female or male does not significantly predict whether that person has good

health.

Finally, the fourth part of the output shows the fit statistics including the null deviance,
the residual deviance, and the AIC.

3.5.5 Interpreting the Coefficients

The logit coefficients can also be obtained using the coef (LR.2) command and
their confident intervals can be obtained with the confint (LR.2) command.

> coef (LR.2)

(Intercept) wrkfull maritals female educ
-1.8201572 0.6550481 0.3673780 0.1821725 0.1618404

> confint (LR. 2)
Waiting for profiling to be done...

2.5% 97.5 %
(Intercept) -2.34090516 -1.3094672
wrkfull 0.43826244 0.8740228
maritals 0.15362395 0.5827676
female -0.02966614 0.3941360
educ 0.12540105 0.1991806

The regression coefficients of the predictors in multiple logistic regression are the logit
coefficients since they are on the scale of the logit or log odds. They are the partial
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effects of the predictor variables on the logit or log odds of the outcome variable (having
good health). Each logit coefficient can be interpreted as the change in the logit or log
odds of having good health for each one-unit increase in the predictor when controlling
for the effects of other variables. A positive logit coefficient indicates there is an increase
in the logit coefficient for a one-unit increase in the predictor, whereas a negative logit
coefficient indicates that there is a decrease in the logit coefficient for a one-unit
increase in the predictor when controlling for other predictors.

3.5.6 Interpreting the Odd Ratios

You get the following output displaying the odds ratios if you run the
exp (coef (LR.2)) command. The corresponding confidence intervals can be
obtained using the exp (confint (LR.2)) command.

> exp (coef (LR.2))

{ (Intercept) wrkfull maritals female educ
0.1620003 1, 9252351 1.4439437 1.1998212 1.1756726

> exp (confint (LR.2))
Waiting for profiling to be done...

{ 2.5% 97.5 %
{ (Intercept) 0.09624049 0.2699638
| wrkfull 1.55001164 2.3965322
| maritals 1.16605232 1.7909884
| female 0.97076958 1.4831023
! educ 1.13360300 1.2204023

> cbind (exp (coef (LR.2)), exp(confint (LR.2)))
| Waiting for profiling to be done...

2.5% 97.5 %

(Intercept) 0.1620003 0.09624049 0.2699638
wrkfull 1.9252351 1.55001164 2.3965322
maritals 1.4439437 1.16605232 1.7909884

i female 1.1998212 0.97076958 1.4831023
i educ 1.1756726 1.13360300 1.2204023

For wrkfull, odds ratio = 1.925. The odds of having good health for the people
who work full-time are 1.925 times the odds of having good health for those who do
not work full-time.

For maritals, odds ratio = 1.444, which is larger than 1. This indicates that the
odds of having good health for the married were 1.444 times the odds for the

unmarried.

For educ, odds ratio = 1.176, for each one-unit increase in education, the odds of
having good health increase by a factor of 1.176. Another interpretation is the per-
centage change in odds. It can be calculated by using (odds ratio — 1) X 100%. In this
example, (1.176 — 1) X 100% = 17.6%. For each one-unit increase in education,
there is an increase of 17.6% in the odds of having good health.
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For female, odds ratio = 1.200, p > .05, which is not significant. When an odds
ratio takes a value of 1, it means that there is no significant effect of the predictor
variable on the odds of success when holding other variables constant. Therefore, being
a female or not does not significantly influence whether that person has good health.

3.5.7 Interpreting the Pseudo R?

The pseudo R? statistics for the multiple logistic regression model are obtained using
the nagelkerke (LR.2) command. The output is displayed as follows.

> # PseudoR2 (LR.2)
> nagelkerke (LR.2)

$ Models"

Model: "glm, healthy ~ wrkfull + maritals + female + educ, binomial (1ink = \"logit\"), chp3.1lr"
Null: "glm, healthy ~ 1, binomial (link = \"logit\"), chp3.1lr"

$Pseudo.R.squared. for.model.vs.null

Pseudo.R.squared

McFadden 0.0688652
Cox and Snell (ML) 0.0796992
Nagelkerke (Cragg and Uhler) 0.1137550
$Likelihood.ratio.test

DE.difE LogLik.diff Chisqg p.value

-4

-77.781 155.56 1.3082e-32

$Number.of .observations

Model
Null

SMessages

1873
1873

[1] "Note: For models fit with REML, these statistics are based on refitting with ML"

$Warnings
[1] "None"

The McFadden R = 0.069, the Cox Snell ## = 0.080, and the Nagelkerke R* =
0.114.

These three pseudo A? statistics are larger than those in the previous simple logistic
regression model. (McFadden’s R = .025 for the one-predictor model.) It seems that
the full model fits better than the simple logistic regression model, but we also need to
look at other fit statistics.
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Please note that a pseudo B> measure should not be interpreted as variance explained by
the predictors in the model as its analog in multiple linear regression. When it is used
for model comparisons, instead of depending on this single statistic, it should be used
together with other fit statistics.

3.5.8 AIC and BIC Statistics

The AIC and BIC statistics are obtained using AIC (LR.2) and BIC(LR.2),
respectively.

> AIC(LR.2)
[1] 2113.367
> BIC(LR.2)
[1] 2141.044

To compare the AIC and BIC statistics of the two fitted model, we use AIC (LR. 1,
LR.2) and BIC(LR.1, LR.2).

> AIC(LR.1, LR.2)

df AIC
LR.1 2 2207.209
LR.2 5 2113.367

> BIC(LR.1, LR.2)

df BIC
LR.1 2 2218.280
LR.2 5 2141.044

The AIC and BIC statistics decrease by 93.842 and 77.236, respectively. Since smaller
AIC and BIC statistics means a better model fit, the results support that the multiple
logistic regression model fits the data better.

3.5.9 Hosmer-Lemeshow Goodness-of-Fit Statistic

We use the hoslem. test () function in the ResourceSelection package
(Lele et al., 2019) to obtain the Hosmer—Lemeshow goodness-of-fit statistic. The
ResourceSelection package needs to be installed first by typing install.
packages (“ResourceSelection”). We then load it with library
(ResourceSelection). The output produced by the hoslem.test
(healthy, fitted(LR.2), g = 10) syntax is displayed as follows. The syntax
includes the outcome variable, healthy, the estimated probabilities, fitted (LR.2),
and the number of groups, g = 10.

125



126  Categorical Data Analysis and Multilevel Modeling Using R

> # Hosmer-Lemeshow goodness-of-fit test
> library (ResourceSelection)
> hoslem.test (healthy, fitted(LR.2), g = 10)

Hosmer and Lemeshow goodness of fit (GOF) test

| data: healthy, fitted(LR.2)
X-squared = 7.9332, df = 8, p-value = 0.44

> hlt2<-hoslem. test (healthy, fitted(LR.2), g = 10)
> cbind (hl1t2$observed, hlt2$expected)

i yO0 yl yhatO yhatl
| [0.212,0.53] 109 82 102.48990 88.5101 |
| (0.53,0.575] 79 111 82.67738 107.3226 :
i (0.575,0.652] 79 131 79.11126 130.8887
! (0.652,0.685] 60 132 62.82160 129.1784 !
| (0.685,0.723] 47 135 52.67628 129.3237 i
! (0.723,0.758] 54 131 46.16049 138.8395
! (0.758,0.791] 40 144 39.57522 144.4248
| (0.79,0.833] 29 176 37.20245 167.7975
| (0.833,0.857] 23 127 22.74877 127.2512
! (0.857,0.932] 25 159 19.53663 164.4634 |

In the output, the Hosmer—Lemeshow chi-square test has a value of 7.933, with the
degrees of freedom equal to 8. The associated p value is .44, which is not significant.
Therefore, the model fits the data well.

To see the estimated probabilities by the 10 groups, we use the cbind (hlt2$
observed, hlt2Sexpected) command. The first column lists the estimated
probabilities for these groups, which are ordered in sequence. The second column yO0 lists
the number of observations for the outcome variable with the value of 0, and the third
column y1 is the number of observations for the outcome variable with the value of 1. The
last two columns are yhatO0 and yhatl, respectively, which are the expected number of
frequencies for no event and the event occurring. Within each group, the frequencies of the
observed cases are compared with the expected frequencies, and we would like to see small
discrepancies between them. This test follows a chi-square distribution with the degrees of
freedom equal to the number of groups —2. A nonsignificant p value indicates that the
model fits the data well since there is no significant difference between the observed and
expected data.

3.5.10 Testing the Overall Model Using the Likelihood
Ratio Test

To test if the overall model is significant, we use the anova (LR.2, upda-
te(LR.2, ~1), test = "Chisq") command. The anova () function
compares the deviance statistics of the fitted model LR. 2 and the null model using the
chi-square test.
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> LR.2 <- glm(healthy ~ wrkfull + maritals + female + educ, data = chp3.1lr, family = binomial (link = ,
"logit™)) f
> anova (LR.2, update (LR.2, ~1), test = "Chisq")
Analysis of Deviance Table

Model 1: healthy ~ wrkfull + maritals + female + educ
Model 2: healthy ~ 1 -

Resid. Df Resid. Dev Df Deviance Pr (>Chi)
1 1868 2103.4
‘ 2 1872 2258.9 -4 -155.56 < 2.2e-16 **x

Signif. codes: 0 “***’ 0,001 ***’ 0.01 **’/ 0.05*.”7 0.1 '"1

i

The deviance of the current model was 2,103.4 and that of the null model was 2,258.9.
Therefore, the difference in deviance was 155.56 with 4 degrees of freedom. The devi-
ance difference is the likelihood ratio chi-square test statistic. It is the difference in the —2
log likelihood (—2LL) between the current model, which contains the four predictors
and the intercept, and the null or empty model, which contains only the intercept.

The associated p value with the likelihood ratio chi-square test Prob (>chi) <
0.0001 indicates that the null hypothesis is rejected. Therefore, the overall model
with the four predictors is significant.

3.5.11 Model Comparison Using the Likelihood Ratio Test

To identify which model fits the data better, the likelihood ratio test or the deviance
difference test can be used. Recall that this test compares the reduced model, which
contains less parameters, and the full model, which contains all parameters. The dif-
ference in deviance is often expressed as G = Deviance for the reduced model —
Deviance for the full model or as Dgeguced — Druit- The difference in deviance between
nested models has a chi-square distribution with the degrees of freedom equal to the
difference in the number of parameters between these two models.

The anova () function is used for the likelihood ratio test or the deviance difference
test. Next, we compare the simple logistic regression model and the multiple logistic
regression model with the anova (LR.1, LR.2, test = "Chisq") command.

> anova (LR.1, LR.2, test = "Chisqg")
Analysis of Deviance Table

Model 1: healthy ~ wrkfull
Model 2: healthy ~ wrkfull + maritals + female + educ

Resid. Df Resid. Dev Df Deviance Pr (>Chi)
1 1871 2203.2
2 1868 2103.4 3 99.842 < 2.2e-16 ***

Bignif. codes: 0 Ve&wr g {01 MR 0 01 Y 0,05 v, r D102 1
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The likelihood ratio chi-square test xé = 99.842, p < .001. The same result can be
obtained if you compute it using the following equation:

G = DReduced — Drat = 2203.2 —2103.4 = 99.80, df = 1871 — 1868 = 3

3.5.12 Interpreting the Marginal Effects in Logistic Regression

We load the margins package (Leeper, 2021) with the library (margins)
command and compute the average marginal effects with the margins (LR.2)
command. This package needs to be installed first with the install.pack-
ages (“margins”) command. The results are named LR. 2, and the summary of
the results is obtained with summary (marg2) as follows.

> library(margins)
> marg2<-margins (LR.2)
> summary (marg2)

factor AME SE z P lower upper

educ 0.0307 0.0033 9.2173 0.0000 0.0241 0.0372

female 0.0345 0.0204 1.6896 0.0911 -0.0055 0.0745

| maritals 0.0696 0.0205 3.3897 0.0007 0.0293 0.1098
g wrkfull 0.1241 0.0204 6.0787 0.0000 0.0841 0.1641

1
1

The average marginal effect for educ is .031. Since educ is continuous, its marginal
effect is an instantaneous rate of change in the probability of having good health with a
small change in education. The result indicates that on average the predicted proba-
bility of having good health increases by 3.1% for a one-unit increase in education
when holding all other predictors constant.

The average marginal effect for maritals is .070. Since maritals is binary, the
marginal effect is a discrete change when its value moves from 0 to 1. This indicates
that on average the predicted probability of having good health for the married is 7%
higher than that for the unmarried when holding the other predictors constant. The
other two predictor variables are also binary, so the interpretation is similar.

3.5.13 Computing the Predicted Probabilities With the
predict () Function

We can use the predict () function to compute the predicted probabilities for a
particular variable at given values. For example, we would like to compute the predicted
probabilities for educ at the specified values of 12, 14, and 16 when holding the other
predictor variables at their means. We first create a data frame with the data.
frame () function and then apply the predict () function. In the data.
frame () function, educ = c (12, 14, 16) specifies the values of educ;
maritals = rep(mean(maritals), 3) repeats the mean of maritals
three times; wrkfull = rep (mean (wrkfull), 3) repeats the mean of



Chapter 3 m Logistic Regression for Binary Data

wrkfull three times; and female = rep (mean (female), 3) repeats the
mean of female three times. The created data frame is assigned to an object named
newdf.

> newdf <- data.frame (educ = c(12,14,16),

+ maritals=rep (mean (maritals), 3),

+ wrkfull=rep (mean (wrkfull), 3),

+ female=rep (mean (female), 3))

> newdf
educ maritals wrkfull female (

1 12 0.4372664 0.467165 0.5563267

2 14 0.4372664 0.467165 0.5563267 H

3 16 0.4372664 0.467165 0.5563267

In the predict () function, we first specify the model object LR. 2 and then the
newdata = newdf argument, followed by the type = "response" argument
for the predicted probabilities. The predicted probabilities labeled pred.prob are
provided in the data frame named newdf. '

> newdf[,c(’pred.prob’)] <- predict(LR.2, newdata=newdf, type="response")
> newdf

educ maritals wrkfull female pred.prob
1 12 0.4372664 0.467165 0.5563267 0.6659520
2 14 0.4372664 0.467165 0.5563267 0.7337268 l
3 16 0.4372664 0.467165 0.5563267 0.7920447 i

The same results can be obtained by using the ggpredict () function in the
ggeffects package in the following section.

3.5.14 Computing the Predicted Probabilities With the
ggpredict () Function in the ggeffects Package

The ggpredict () function in the ggeffects package (Lidecke, 2018b) is used
to compute the predicted probabilities when the outcome variable ¥ = 1 for predictor
variables at specified values. The ggeffects package needs to be installed first by
typing install.packages (“ggeffects”). We then load it with library
(ggeffects). In the first example, we compute the predicted probabilities of being
healthy (i.e., Y= 1) for educ at the values of 12, 14, and 16 when holding the other
three predictor variables constant at their means. Please note that the predictor variables
need to be numeric so that they can be held constant at their means. The syntax is as
follows: margins <- ggpredict(LR.2, terms = "educ[l12, 14,

16]1").Inthe ggpredict () function, LR. 2 is the fitted model and the terms =
"educ([12, 14, 16]" option specifies the predictor variable educ at the values of
12, 14, and 16. When there are more than one variable, the terms option can specify
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up to four variables, including the second to fourth grouping variables. In this example,
we include only one variable in the terms option. The output is assigned to an object
named margins. To request the standard errors of the predicted probabilities, we can
use either the as.data.frame () orthe sqrt (diag(vcov())) function. The
vcov () function computes the variance—covariance matrix, so the standard errors can
be obtained by taking the square root of the variances, which are on the diagonal of the
matrix.

> library(ggeffects)
> margins <- ggpredict(LR.2, terms = "educ[12, 14, 16]")
> margins

# Predicted values of healthy

educ | Predicted | 95% CI ;

1287 | 0.67 | [0.64, 0.69]
194 | 0730 €9 [0.71, 0.75] |
16 | 0.79 | [0.77, 0.82]

Adjusted for:

* wrkfull = 0.47
*maritals = 0.44

& female = 0.56

> as.data.frame (margins)

X predicted std.error conf.low conf.high group |
1 12 0.6659520 0.05899403 0.6397564 0.6911624 iL
2 14 0.7337268 0.05581622 0.7118151 0.7545469 1
2 16 0.7920447 0.07470175 0.7668988 0.8151319 1 i

> sqgrt(diag(vcov (margins)))

1 2 3
0.05899403 0.05581622 0.07470175

> plot(margins)

When educ equals 12, 14, and 16, and the other three predictor variables are held at
their means, the predicted probabilities of being healthy (i.e., Y = 1) are .666, .734,
and .792, respectively. The results are the same as those obtained in the last section.
They are plotted using the plot (margins) command. Figure 3.1 shows the
predicted probabilities of being healthy (i.e., Y = 1) for educ at 12, 14, and 16. With
an increase in years of education, the probabilities of having good health (Y =1)
increase.

We can also compute the predicted probabilities for a continuous variable at given
values by different groups. In the third example, we compute the predicted probabilities
of being healthy (i.e., ¥ = 1) for educ at the values of 12, 14, and 16 by the two
groups in wrkfull when holding other variables at their means. The syntax is as



Chapter 3 m Logistic Regression for Binary Data 131

FIGURE 31 @ Estimated Probabilities When Y = 1 for educ at 12, 14, and 16

With Others Fixed at Their Means
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follows: margins.ew <- ggpredict (LR.2, terms = c("educ[12, 14,
161", "wrkfull")). Inthe ggpredict () function, the terms = c ("educ
[12, 14, 16]", "wrkfull") option specifies both educ and wrkfull, with
the latter as the grouping variable. The output is assigned to an object named mar-
gins.ew and is plotted with the plot (margins.ew) command.

> margins.ew <- ggpredict(LR.2, terms = c("educ[12, 14, 16]", "wrkfull"))
> margins.ew

# Predicted values of healthy

# wrkfull =0

educ | Predicted | 95% CI
12 | 0.59 | [0.56, 0.63]
14 | 0.67 | [0.64, 0.70]

16 | 0.74 | [0.70, 0.77]

i
i
H
H
|
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# wrkfull =1

* educ | Predicted | 95% CI
12 | 0.74 | [0.70, 0.77]
14 | 0.80 | [0.77, 0.82]
16 | 0.84 | [0.82, 0.87]

Adjusted for:
* maritals = 0.44
* female = 0.56

> plot (margins.ew)

FIGURE 3.2 @ Predicted Probabilities of Being Healthy for educ at

and 16 by wrkfull
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As shown in the graph, the predicted probabilities of having good health (¥ =1)
increase with an increase in years of education and the probability for the people who
work full-time is higher than the probability for those not working full-time.
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3.6 PROBIT REGRESSION USING R

In addition to the logistic regression models introduced above, probit regression is also
a popular method for analyzing binary response variables. The probit model assumes a
standard cumulative normal distribution with a mean of 0 and a standard deviation of
1. While the logit link function is used for logistic regression models, the probit link
function is used for the probit regression models. The probit link, or probit trans-
formation, can be expressed as the inverse of the cumulative density function (cdf) of
the standard normal distribution ®~'(7r), where @ is the cdf for the standard normal.
The model can be expressed as:

O7(m) = a+ X +BXat .. +BX, (3.22)

where Xi, X5, ..., X, are the predictor variables and B1, B2, ..., B, are the probit
coefficients of these predictors. By taking the inverse on both sides of the equation, we
get the following equation:

w(Y = 1|x,% .. %) = cb(a+31X1 + B+ ... +/3po) (3.23)

where @ (.) denotes the cdf for the standard normal and a linear combination of the
intercept and a set of predictors that are specified within the parentheses. The probit
coefficients are z scores or standard normal scores.

3.6.1 Interpretation of Model Parameter Estimates in
Probit Regression

First, the estimated regression coefficients are the probit coefficients, which can be
interpreted as the change in the predicted probit for a one-unit increase in the predictor
variable when holding the other predictors constant. Second, since probit regression is
based on the cumulative normal distribution ®, the regression coefficient can also be
interpreted as the change in the z scores for each one-unit increase in the predictor
variable. Recall that the change in z scores is the number of standard deviations from
the mean of a variable. Third, as with logistic regression, we can estimate marginal
effects in probit regression. A marginal effect can be interpreted as the change in the
predicted probability for a one-unit change in a predictor variable. Fourth, we can
interpret probit coeflicients in terms of predicted probabilities at representative values
of a set of predictor variables.

3.6.2 The glm () Function for Multiple Probit Regression

In the following example, the glm (healthy ~ wrkfull + maritals +
female + educ, data = chp3.lr, family = binomial (link =
"probit")) command tells R to predict the dependent variable healthy from the
four independent variables with the probit link function. The fitted model is named
PR. 2. The following output is shown by the summary (PR.2) command.
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> # Probit regression

> PR.2 <- glm(healthy ~ wrkfull + maritals + female + educ, data = chp3.1lr, family =
binomial (1ink = "probit"))

! > summary(PR.2)

| Calls

glm(formula = healthy ~ wrkfull + maritals + female + educ, family = binomial (link =
i "probit"),

data = chp2.1lr)

Deviance Residuals:

Min 1Q Median 3Q Max
i -2.3716 -1.2015 0.6466 0.8735 1472237
Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -1.04382 0.15487 -6.740 1.58e-11 *** i
wrkfull 0.38772 0.06535 5+933 2.98e-09 ***
maritals 0.21948 0.06463 3.396 0.000684 *** :
female 0.10578 0.06423 1.647 0.099553..
educ 0.09425 0.01096 8.599 <.2e-16:%%* |
]

Signif. codes: 0 ‘***’/ 0,001 ‘**/ 0.01 ‘**’/ 0.05 ‘.7 0.1 "1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2258.9 on 1872 degrees of freedom i
|  Residual deviance: 2105.0 on 1868 degrees of freedom
| arc: 2115 |

Number of Fisher Scoring iterations: 4

The probit coefficients can also be obtained using the coef (PR.2) command and
their confident intervals can be obtained with the confint (PR.2) command. The
output is omitted here.

3.6.3 Interpreting Probit Coefficients in R Output

The coefficients table displays the probit coefficients for the four predictor variables and
the intercept, their standard errors, the Wald z statistics, and the associated p values.

For the predictor variable wrkfull, the probit coefficient 8 = .388, which is positive.
This indicates that working full-time increases the probability of having good health
when holding all the other predictors constant. It can also be interpreted that working
full-time increases the z score by .388. The probit coefficients of the other three pre-
dictors can be interpreted in a similar way.
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We can use the marigns () function in the margins package to compute marginal
effects and the ggpredict () function in the ggeffects package to compute the
predicted probabilities. The output is omitted here.

3.7 MAKING PUBLICATION-QUALITY TABLES

3.7.1 Presenting the Results Using the stargazer Package

We can use the stargazer package (Hlavac, 2018) to make a table containing the
results of the fitted models with the glm () function. After fitting the single-predictor
model LR.1 and the multiple-predictor model LR. 2, we use the syntax as follows:
stargazer (LR.1, LR.2, type = "text", align = TRUE, out =
"lr2mod.txt"). In the stargazer () function, we first specify the two model
objects to be presented and then the type of table. The option type = "text"
specifies the table type and the align = TRUE option aligns the results of the two
models. The out = "lr2mod.txt" argument saves the output named
1r2mod. txt.

> library(stargazer)
> stargazer (LR.1, LR.2, type = "text", align = TRUE, out = "lr2mod.txt")

healthy

(1) (2)
wrkfull 0 778*%% 0. 655%**
! (0.106) (0.111)
{ maritals 0.367***
(0.109)

female 0.182* Q
(0.108)
educ 0.162%**
(0.019)
Constant 0::559%%* =1.820%***
(0.066) (0.263)
Observations 1,873 1,873
| Log Likelihood -1,101.605 -1,051.684
| Akaike Inf. Crit. 2,207.209 2;113.367
| Note: *p<0.1; **p<0.05; ***p<0.01
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We can also create the table in the HTML format and copy it into Microsoft Word. The
syntax is as follows: stargazer (LR.1, LR.2, type = "html", align =
TRUE, out = "1r2mod.htm"). It produces Table 3.6, as shown here in its original
format, presenting the results of both the single-predictor and multiple-predictor logistic
regression models.

TABLE 3.6 @ Results of the Logistic Regression Models: Single-Predictor
and Multiple-Predictor Models (Shown in Original Format Generated by R)

Dependent variable:

Healthy

Wrkfull 0.778*** 3.655"* ¢
(0.106) (0.111)
Wi o 0.367++
- - | (0.109)
Female 0.182*
(0.108)
e 062
(0.019)
Constant 0:957% " -1.820***
(0.066) (0.263)
Observations 1873 ¢ 41873
Log Likelihood -1,101.605 -1,051.684
Akaike Inf. Crit. ~ 2,207.209 2,113.367
Note:
*p < 0.1
**p < 0.05
***p < 0.01

3.8 REPORTING THE RESULTS

When you summarize the results of logistic regression models, it is good practice to
describe the statistical method you use for data analysis, the dependent variable and the
independent variables in the models, and your research hypothesis or the purpose of
your study. Also, report the likelihood ratio test statistic, the degrees of freedom, and
the associated p value. Based on the likelihood ratio test result, you may discuss whether
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the fitted model fits better than the null model containing only the intercept. If more
than one model is fitted, then the deviance statistics for each model may be presented,
and the results of the likelihood ratio test comparing deviance statistics between nested
models may be provided.

In the body of the text, you may interpret the parameter estimates or the odds ratios for
the predictor variables.

You could have a table containing all the parameter estimates, their standard errors, p
values, and odds ratios. A summary of major fit statistics also might be included in the
table, which could include the likelihood ratio test statistic with its degrees of freedom;
a couple of pseudo R? values, such as the likelihood ratio > and Cox and Snell’s R?; the
deviance statistic; and the AIC and BIC statistics. If more than one model is fitted, then
the results of all the competing models from the simple model to the full model can be
presented in the table. For detailed guidelines and recommendations on reporting the
results of logistic regression, see Peng et al. (2002). In addition, O’Connell and Amico
(2010) provided a list of key elements of logistic regression that should be addressed when
judging a manuscript from a reviewer’s perspective. Huck (2012) also provided examples
on reporting the results of logistic regression from published articles. The following is an
example of summarizing results from the multiple logistic regression model.

The multiple logistic regression analysis was conducted to estimate the
probability of having good health from four predictor variables. The dependent
variable was having good health or not, and the independent variables were
working full-time, marital status, years of education, and gender. The likeli-
hood ratio chi-square test statistic for the four-predictor model LR X(za) =
155.56, p < .001, indicated that the overall model with all four predictors was
significant. When comparing the multiple logistic regression model with the
simple logistic regression model, the likelihood ratio chi-square test x(23) =
99.842, p < .001, indicated the full model had a better fit. Table 3.6 presents
the logit coefficients and standard errors of the full model. The results are
interpreted in terms of odds ratios.

For wrkfull, odds ratio = 1.925. The odds of having good health for the
people who work full-time are 1.925 times the odds of having good health for
those who do not work full-time.

For maritals, odds ratio = 1.444, which is larger than 1. This indicates
that the odds of having good health for the married were 1.444 times the
odds for the unmarried.

For educ, odds ratio = 1.176, for each one-unit increase in education, the
odds of having good health increase by a factor of 1.176.

For female, odds ratio = 1.200, p > .05, which is not significant. This
indicates that being a female or not does not significantly influence whether
that person has good health.
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3.9 SUMMARY OF R COMMANDS IN
THIS CHAPTER

# Chap 3 R Script
# Remove all objects
rm(list = 1s(all = TRUE)) i

# The following user-written packages need to be installed first by using
install.packages (“ ”) and then by loading it with library() i
# library(foreign)

# library(rcompanion)

# library (ResourceSelection)

# library(margins)

# library(ggeffects) # It is already installed for Chapter 2
# library(stargazer) # It is already installed for Chapter 2

# Import GSS 2016 Stata data file

library(foreign)

chp3.1lr <- read.dta("C:/CDA/gss2016.dta")
chp3.1lr$educ <- as.numeric (chp3.lr$educ)
chp3.1lr$wrkfull <- as.numeric(chp3.lr$wrkfull)
chp3.lr$maritals <- as.numeric (chp3.lrSmaritals)
attach (chp3.1r) i
head (chp3.1r)
table (healthy)
table (wrkfull)

# Cross tabulation

tab <- table (healthy, wrkfull) |
summary (tab)
tab
ftable (tab) {
addmargins (tab)

# Simple logistic regression |
LR.1 <- glm(healthy ~ wrkfull, data = chp3.1lr, family = binomial (1ink = "Togit™))
summary (LR.1) ’
coef (LR.1) |
confint (LR.1)
confint.default (LR.1)
exp (coef (LR.1))

exp (confint (LR.1))

library(rcompanion)
nagelkerke (LR.1)
1-2203.2/2258.9 |
LR.0 <- glm(healthy ~ 1, data = chp3.1lr, family = binomial (link = "logit™))
LLM <- logLik (LR.1)

| LLO <- logLik(LR.0) i
McFadden <- 1-(LLM/LLO) !
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McFadden

CS <- 1-exp (2* (LLO-LLM) /1873)
cs

NG <- CS/ (1-exp (2*LL0/1873))
NG

AIC(LR.1)
BIC(LR.1)

anova (LR.1, update (LR.1, ~1), test="Chisq")

# Multiple logistic regression

LR.2 <- glm(healthy ~ wrkfull + maritals + female + educ, data = chp3.1lr, family =
binomial (link = "logit"))

summary (LR.2)

coef (LR.2)

confint (LR.2)

exp (coef (LR.2))

exp (confint (LR.2))

cbind (exp (coef (LR.2)), exp (confint (LR.2)))

nagelkerke (LR.2)
1-2103.4/2258.9
AIC(LR.2)
BIC(LR.2)
AIC(LR.1, LR.2)
BIC(LR.1, LR.2)

# Hosmer-Lemeshow goodness-of-fit test
library(ResourceSelection)

hoslem.test (healthy, fitted (LR.2), g = 10)

hlt2 <- hoslem. test (healthy, fitted(LR.2), g = 10)
cbind(hlt2$observed, hlt2$expected)

anova (LR.2, update (LR.2, ~1), test="Chisqg")

# Model comparison using the log likelihood ratio test
anova (LR.1, LR.2, test = "Chisqg")

# Marginal effects
library(margins)
marg2 <- margins (LR.2)
summary (marg2)

# Predicted probabilities
newdf <- data.frame (educ=c(12,14,16),
maritals=rep (mean (maritals), 3),
wrkfull=rep (mean (wrkfull), 3),
female=rep (mean (female), 3))
newdf
newdf[,c(’pred.prob’)] <- predict(LR.2, newdata=newdf, type="response")
newdf
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# Predicted probabilities with ggpredict() in ggeffects
library(ggeffects)

margins <- ggpredict(LR.2, terms="educ[12, 14, 16]")
margins

as.data.frame (margins)

sqgrt (diag(vcov (margins)))

plot (margins)

margins.ew <- ggpredict(LR.2, terms = c("educ[12, 14, 161", "wrkfull"))
margins.ew
plot (margins.ew)

# Probit regression

PR.2 <-glm(healthy ~ wrkfull + maritals + female + educ, data = chp3.1lr, family =
binomial (1ink = "probit"))

summary (PR.2)

# Making tables to display the results

library(stargazer)

stargazer(LR.1, LR.2, type="text", align=TRUE, out="1r2mod.txt")
stargazer (LR.1, LR.2, type="html", align=TRUE, out="1r2mod.htm")

detach (chp3.1lr)




Glossary

A Bernoulli distribution is a distribution for a binary variable with 1 for having an event or success and
0 for not having an event or failure. It is a special case of the binomial distribution with one trial for each
individual.

A logit coefficient is the regression coefficient in the logit scale in logistic regression models.

A marginal effect is a change in a response variable related to the change in an independent variable. In
logistic regression, it is a change in the predicted probability with a change in the values of a predictor
variable.

A probit regression model is used with the probit transformation of a binary outcome variable.
An odds ratio (OR) is a ratio of two odds.

Deviance compares the currently fitted model and the saturated model. It is defined as -2 times the
difference in log likelihood between these two models.

Generalized linear models extend the linear regression model when the response variable follows a
distribution from the exponential family. They include three common components: the random
component, the systematic component, and the link function.

Logistic regression is a regression method used to predict a binary outcome variable with the logistic
transformation.

The AIC penalizes the deviance by the number of predictors.
The BIC penalizes the deviance by its degrees of freedom and the sample size.

The likelihood ratio test is the difference in deviance between nested models. It is the difference in
-2LL, which can be expressed as a ratio of likelihood in logarithm.

The linear probability model is used to estimate a binary outcome variable with the linear regression
method.

The odds are the ratio of two probabilities, the probability of success or of having an event (p) to the
probability of failure or of not having an event (1 - p).

Exercises

Use the GSS 2016 data available at https://edge.sagepub.com/liule for the following problems.

1. Conduct a logistic regression analysis to examine the relationship between the outcome variable
gunlaw and three predictor variables from the three predictor variables sex, educ, and age.
Before conducting the analysis, recode gunlaw into a new variable named gun so that 1 = favoring
gun permit and 0 = opposing gun permit.

2. Conduct the likelihood ratio test of the overall model and interpret it.




Compute the deviance statistic for the model.
List three measures of pseudo R? and the AIC statistic.

Identify the logit coefficient, the Wald z test, and the 95% confidence interval for the predictor
variable educ.

Computer the odds ratios for educ and age.

Make a publication-quality table containing the estimated logit coefficients.

. Write a report to summarize the results from the output.




