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MULTINOMIAL LOGISTIC
REGRESSION MODELS

OBJECTIVES OF THIS CHAPTER

This chapter introduces multinomial logistic regression models. It first starts with an
introduction to the multinomial logistic regression model followed by a discussion of
the odds and odds ratios or relative risk ratios in the model, goodness-of-fit statistics,
and how to interpret parameter estimates. After a description of the research example,
the data, and the sample, the multinomial logistic regression models are illustrated with
the VGAM, nnet, and mlogit packages. R commands and output are explained in
detail. This chapter focuses on fitting the multinomial logistic regression models with R,
as well as on interpreting and presenting the results. After reading this chapter, you

should be able to:

e Identify when multinomial logistic regression models are used.
e Fit a multinomial logistic regression model using R.

e Interpret the output.

e Compute, plot and interpret the predicted probabilities.

e Compare models using the likelihood ratio test.

e Present results in publication-quality tables using R.

e Write the results for publication.
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7.1 MULTINOMIAL LOGISTIC REGRESSION
MODELS: AN INTRODUCTION

The multinomial logistic regression model is used to estimate nominal response variables
that have multiple unordered categories. For example, the nominal response variable in
Hoffmann (2016) and Kaufman (2019) was the three-category political views including
liberal, moderate, and conservative. Another example in Menard (2010) was the four-
category political party affiliation including Democrat, Independent, Republican, and
other. This model is a generalization of binary logistic regression when there are more than
two nominal categories in a response variable. It can also be used for an ordinal response
variable when the proportional odds assumption does not hold. It estimates the odds of
being in a category versus the base category of a nominal variable. Although the propor-
tional odds model compares the cumulative probabilities of being at or below a particular
category and the probabilities of being above that category, the multinomial logistic
regression model compares a particular category with the base category. If a nominal
response variable has / levels, there are / — 1 comparisons between any other categories and
the base category. For example, if we disregard the ordinal nature of the ordinal response
variable, health status, and treat it as 2 nominal response variable with four categories, then

we compare category 2 and category 1, category 3 and category 1, and category 4 and
category 1 in the multinomial logistic model where the base category is set to be one.

The multinomial logistic model can be expressed as follows:

]_n(P(Y =j|x|, xn,...,xp)
P(Y =]|x1,x2,...,xp)

) = a;+ B X +BpXo + ...+ BX, (7.1)

where j = 1, 2, ..., / — 1; J is the base category, which can be any category but is
generally the highest one; a; are the intercepts; and Bj1, By, ..., Bjp are the logit
coefficients for each comparison. The model estimates / — 1 logit coefficients for each
predictor. If we set the base category to be category 1, the lowest category, then the

model can be rewritten as follows:

P(Y :j‘xl, xz,...,xp)
ln(p(Y = 1|x1,xz,...,x,,)> = aj+B;Xi +BpXat ... + Bk (7.2)

where j = 2, 3, ..., /; and category 1 is the base category.

It can be treated as a simultaneous estimation of a series of binary logistic regression
models comparing a particular category and the base category. In each binary model,
being in a particular category is coded as the binary outcome of 1 and being in the base
category is coded as 0. For example, when the base category is 1, the dichotomized
outcome in the first binary model compares category 2 with category 1.

7.1.1 The Multinomial Distribution

The multinomial distribution is an extension of the binomial distribution when the
discrete random variable is a nominal variable with more than two categories. Recall
that the binomial distribution is expressed.
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P(Y = k) = (:)p*(l —p)yk (7.3)

o\, ; ' : : .
where ( | s the binomial coefficient, # is the number of successes, 7 is the number

of trials, and p is the success probability when the binary outcome is 1.

7 n!
<k) O

where 7! is n factorial or the factorial of 7. #! = »*(n—1) ... 2*1.

When the outcome of a nominal variable has more than two categories, the probability
function or the PDF is expressed as:
n'

P(m,ny,...n) = = p’l"pgz...p;j (7.4)
.7}

n]!ﬂz!.

where j is the number of categories in the nominal variable, 7; is the number of obser-
vations for a particular category, and p; is the probability of choosing each category. The
total number of observations across all the categories, » = m + np +... + n;. In
addition, the total probability across all the categories is 1. py + p, +... + p; = 1. When
the nominal variable has only two categories (i.e., j = 2), the multinomial distribution
becomes the binomial distribution.

The log likelihood function for the multinomial distribution is expressed as:

l(p, n) - 2=‘niMPi+m

o (7.5)

m!ny!...nj!

where lnm is a constant term and does not involve the parameter p. Y*,_ , 7;Inp;
is the summation term which adds the product of the number of observations for a
particular category (n;) and the log of the probability of choosing that category (Inp;).
For example, if the nominal outcome has four categories, Z{zln,-lnp,- = mlnp; +
mlnp, + n3lnps + nglnp;.

7.1.2 0dds in Multinomial Logistic Models

The multinomial logistic model estimates the logit or log odds of being in a particular
category relative to the baseline category. The odds in the multinomial logistic model
can be defined as the ratio of the probability of being in a particular category to the
probability of being in the base category. It is expressed as:

B =5
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where j can be any categories from 1 to / — 1 categories.

For example, if we treat the ordinal response variable, health status, as nominal with
four categories from 1 to 4, with 1 = poor, 2 = fair, 3 = good, and 4 = excellent, then
we estimate three odds with category 1 as the base category: The odds of being in
category 2 versus category 1, the odds of being in category 3 versus category 1, and the
odds of being in category 4 versus category 1.

Specifically, odds (¥ = 2 vs. ¥ = 1) equal the ratio of the probability of being in
category 2 to the probability of being in category 1:

P(Y =2) _P(2)

Qdds(Y = 2 ve. 1) = P(Y =1)  PQ)

The other two odds, odds (Y= 3 vs. ¥ = 1) and odds (¥ = 4 vs. Y = 1), are expressed
as follows:

P(Y =3) _ P(3)

e ) PP s DL Oe

P(Y = 4) P(4)
P(Y =1) P(1)

Odds(Y =4 vs. 1) =

Table 7.1 presents the logits, odds, and category comparisons for the multinomial
logistic regression model for the nominal response variable with four levels.

7.1.3 Odds Ratios or Relative Risk Ratios in Multinomial
Logistic Regression Models

Since the multinomial logistic model can be treated as a series of binary logistic
regression models estimated simultaneously with the comparison of any other categories
to the base category, the logit coefficients can be interpreted in a similar way as that for
the binary logistic regression. The odds ratio of being in a category j versus the baseline
category / is obtained by taking the exponential of the logit coefficient B. Although the
relative risk can be defined differently, the odds ratio in the multinomial logistic

TABLE 71 @® Category Comparisons for the Multinomial Logistic Regression
Model With Four Levels of Health Status (j =1, 2, 3, 4) 7

logit PlY = 2 vs. 1)

Probability Comparisons

Category 2 vs. category 1

2 logit PlY = 3vs. 1) Qv-s;

3 it Py = st
logit PlY = 4 vs. 1) %}3 Category 4 vs. category 1
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regression is also called the relative risk ratio. Hilbe (2009) preferred the use of the
relative risk ratio rather than the odds ratio since the categories of the nominal response
variable are independent of each other. The odds ratio or relative risk ratio in multi-
nomial logistic regression can be interpreted as the change in the odds or the relative
risk for a one-unit change in a predictor variable when holding other predictor variables
constant. To obtain the muldplicative inverse or reciprocal of the odds, the odds of
being in the base category versus a particular category, we exponentiate the logit
coefficient with a negative sign exp(—p).

7.1.4 Model Fit Statistics

Same as those discussed in the previous chapters, model fit statistics, such as the log
likelihood statistic, the residual deviance, the model chi-square statistic, the AIC and
BIC staristics, and the pseudo R? statistics, can be computed for the multinomial
logistic regression model. The likelihood ratio test and the AIC and BIC statistics can
also be used for model comparisons.

7.1.5 Interpretation of Model Parameter Estimates

A logit coefficient in the multinomial logistic regression model is the log odds of being a
particular category relative to the base category. Exponentiating the product of the logit
coefficients gives us the odds ratios of being a category j versus the baseline /. The
interpretation of odds ratios is similar to that of other logistic regression models. The
odds ratios are the change in the predicted odds of being in a particular category
compared with the base category for a one-unit increase in the predictor variable when
holding other predictor variables constant.

When an OR is larger than 1, the odds of being in a particular category versus the base
category increase for a one-unit increase in the predictor variable.

When an OR is less than 1, the odds of being in a particular category versus the base
category decrease for a one-unit increase in the predictor variable.

An OR of 1 indicates that there is no relationship between the predictor variable and
the estimated odds.

The odds of being in the base category compared with a particular category can also be
estimated since they are just the reciprocal of the odds of being in a particular category
versus the base category. These two odds are different in the order when comparing
categories. The odds of being in a particular category versus the base category compares
category j and the base category /, whereas the odds of being in the base category
compared with a particular category compares categories in the reversed order, that is,
the base category / versus a particular category ;.

7.2 RESEARCH EXAMPLE AND DESCRIPTION
OF THE DATA AND SAMPLE

We investigate the relationships between the nominal response variable, health status,
and four predictor variables. Unlike other chapters, however, here the research interest
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focuses on using multinomial logistic regression to predict the nominal response var-
iable. The GSS 2016 data are used for the following analyses. The following are the
variables used for data analysis in this chapter:

e healthre: the recoded variable of health (health status) with four
categories (1 = poor health, 2 = fair health, 3 = good health, and
4 = excellent health)

e maritals: the recoded variable of marital (marital status) with
1 = currently married and 0 = not currently married

e educ: the highest education completed
e female: recoded variable of sex with 1 = female and 0 = male

e wrkfull: working full time or not

7.3 FITTING A ONE-PREDICTOR
MULTINOMIAL LOGISTIC REGRESSION
MODEL WITH R

7.3.1 Packages and Functions for Multinomial Logistic
Regression Models in R

Several packages in R can be used for fitting multinomial logistic regression models.
This chapter introduces the VGAM, nnet, and mlogit packages with the first
package as the main focus. The vglm () function in VGAM (Yee, 2010), the mul-
timon () function in nnet (Venables & Ripley, 2002), and the mlogit()
function in mlogit (Croissant, 2020) are introduced in sequence. Since the nnet
package is part of the R base distribution, we do not need to install it. You just need to
install the other two packages first by using the install.packages () function
and then load them with the 1ibrary () function.

7.3.2 The vglm() Function With the multinomial
Family in the vGaM Package

The vglm () function in the VGAM package can be used for the analysis of multi-
nomial logistic regression models. If the user-written VGAM package is not installed,
you need to install it first by typing install.packages (“WGAM”) before fitting
the model. Since the package has been installed in earlier chapters, we only need to load
the package by typing library (VGAM).

The syntax for multinomial logistic regression models is similar to that for other models
using the vglm () function. The multinomial family needs to be specified for the
family argument. For example, the command vglm(y ~ x, family = mul-
tinomial (reflLevel = 1), data = datal) tells R to fit a multinomial
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logistic regression model predicting the dependent variable y with an independent
variable x. The argument family = multinomial (refLevel = 1) tells R that
itisthemultinomial family and the reference level is the first level. If not specified,
the default reference level is the highest level of the nominal response variable. For more
details on how to use this command, type help (multinomial) in the command
prompt after loading the VGAM package.

7.3.3 The Multinomial Logistic Regression Model:
One-Predictor Model

The command mulmodell <- vglm(healthre ~ educ, multi-
nomial (refLevel = 1), data = chp7.mul) tells R to fit the multinomial
logistic regression model for the nominal response variable healthre with the
predictor variable educ. In the vglm () function, the multinomial (refLevel
= 1) argument tells us that the multinomial family is used to fit the model and
the reference level is the first level of healthre. The summary (mulmodel)
command displays the output of the fitted model.

> # One-predictor multinomial logistic regression model with vglm() in VGAM

> library (VGAM)

> mulmodell <- vglm(healthre ~ educ, multinomial (reflLevel = 1), data=chp7.mul)
> summary (mulmodell)

Call:
vglm(formula = healthre ~ educ, family = multinomial (refLevel = 1),
data = chp7.mul)

Pearson residuals:

Min 1Q Median 3Q Max

log(muf[,2]/mu[,1]) -4.378 -0.3625 -0.3029 -0.2267 2.704
log(mu[,3]/mufl,1]) -5.234 -0.6881 -0.4458 0.8864 2.145
log(mu[,4]/mul,1]) =5.159 -0.3677 -0.2720 -0.1541 8.317
Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) :1 0.17577 0.42732 0.411 0.68082
(Intercept) : 2 -0.78176 0.42076 -1.858 0.06318 .
(Intercept) :3 -3.27536 0.48121 -6.807 1.00e-11 ***
educ:1 0.08907 0.03382 2.633 0.00845 **
educ:2 0.21724 0.03305 6¥n/3 4.93e-11 ***
educ:3 0.33528 0.03640 9.212 < 2e~16 ***

Signif. codes: 0 ‘***’ 0,001 ***' 0101 M70v05 .2 0.1 1 1

Names of linear predictors: log(mu[,2]1/mu[,11), log(muf,3]/mul,11),
log(mu[,4]/mul,1])

Residual deviance: 4333.297 on 5613 degrees of freedom
Log-likelihood: -2166.649 on 5613 degrees of freedom
Number of Fisher scoring iterations: 5

No Hauck-Donner effect found in any of the estimates

Reference group is level 1 of the response
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7.3.4 Interpreting the Output

The output for the multinomial logistic regression model looks similar to that for
binary logistic regression models except that there are multiple binary comparisons to
the reference group. As with the other logistic regression models, the R output for the
multinomial logistic regression model also includes the call, the Pearson residuals, the
coefficients, the number and names of the three linear predictors, the residual deviance,
the log-likelihood value, and the number of iterations. In addition, it lists the reference
group number.

The coefficients section displays the parameter estimates for the intercepts and
the predictor variable, their standard errors, the Wald z statistics, and the associated
2 values.

The null hypothesis for the Wald z test is that the coefficient of the predictor variable is
0, and the alternative hypothesis is that the coefficient of the predictor variable is
significantly different from 0.

Three coefficients for the predictor variable educ are displayed as educ: 1, educ:2,
and educ: 3 since they are the parameter estimates for the three binary logistic models
comparing each category with the base category. Only three binary models are esti-
mated since the base outcome is category 1. These three equations, labeled 1og (mu
[,2]/mu[,1]), log(mu[,3]/mu[,1]), and log(mu[,4]/mu[,1]),
compare categories 2 with 1, categories 3 with 1, and categories 4 with 1, respectively.
The estimated intercepts and logit coefficients for these three sub-models are numbered
1, 2, and 3 in the output.

Based on the parameter estimates in the output, the three equations can be expressed as:

PY &2
ln(i-——)> = .176 + .089educ

P(Y = 1)
In (ig§ j_ ?3) —.782 + .217educ
m@giﬂ) ~3.275 + .335educ

The first equation compares category 2 and category 1. The coefficient for educ,
displayed as educ:1, B = .089, Wald z = 2.633. The associated p value, Pr (> |
z|) < .01, so we reject the null hypothesis and conclude that educ is significant in
predicting the log odds of being in category 2 versus category 1.

The second equation compares category 3 and category 1. The predictor variable
educ, displayed as educ: 2, is also significant. For educ:2, B = .217, Wald z =

6.573, p < .001.
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The third equation compares category 4 and category 1. The predictor variable educ,
displayed as educ: 3, is also significant. For educ: 3, B = .335, Wald z = 9.212,
p < .001.

The Coefficients section also reports the intercepts (labeled as (Intercept) :1,
(Intercept) :2, and (Intercept) :3). They are the intercepts for each
equation comparing a particular category with the reference group or base category.
The reference group in this example is level 1 (i.e., healthre = 1). If not specified, the
default is the highest outcome, but you can specify any category as the reference group.

We can extract the coefficients with coef (mulmodell, matrix = TRUE) and
obtain the confidence intervals with confint (mulmodell, matrix = TRUE) as

follows.

> coef (mulmodell, matrix = TRUE)

log(mu(,2]/mu(,1]) log (mu(,3]/muf(,11) log(mu[,4]/mu[,1])
(Intercept) 0.17577310 -0.7817562 -3.2753578
educ 0.08906957 0.2172438 0.3352403

> confint (mulmodell, matrix = TRUE)

2.5 % 97.5 %
(Intercept) :1 -0.66175738 1.01330357
(Intercept) :2 -1.60643404 0.04292172
(Intercept) :3 -4.21851259 -2.33220303
educ:1 0.02277699 0.15536215
educ:2 0.15246679 0.28202081
educ:3 0.26393850 0.40661298

7.3.5 Interpreting the Odds Ratios of Being in a Particular
Category Versus the Base Category for the Multinomial
Logistic Regression Model

The multinomial logistic regression model estimates the logit odds of being a category
relative to the baseline category. Recall that the exponentiated (8)) is the odds ratio of
being in a category j versus the baseline / for a one-unit change in a predictor variable.
In this model, we define the odds ratio of being in category 2 compared with the base
category 1 as OR (2, 1). Since B = .089 for educ:1, OR(2, 1) = &89 = 1.093,
which indicates that for a one-unit increase in education the odds of being in category 2
of health condition versus the base category 1 increase by a factor of 1.093. In other
words, people who work full time have greater odds of being in the highest health
condition (category 4) rather than being in category 1.

The odds ratio of being in category 3 versus category 1, OR(3, 1) = (217 = 1.242,
which indicates that for a one-unit increase in education the odds of being in category 2
of health condition versus the base category 1 increase by 24.2%. Similarly, the odds
ratio of being in category 4 versus category 1, OR(4, 1) = &(33% = 1.398, which
indicates that for a one-unit increase in education the odds of being in category 4 of
health condition versus the base category 1 increase by 39.8%.
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The above results can be obrained using the exp (coef (slmodell, matrix
TRUE) ) command. We also use the exp (confint (mulmodell, matrix =
TRUE) ) command to obwin the corresponding confidence intervals. Both results
are combined with the cbind(exp (coef (mulmodell)), exp (confint
(mulmodell))) command.

> exp (coef (mulmodell, matrix = TRUE))

log (mu(,2]/mufl,1])
(Intercept) 1.192168
educ 1.093157

log(mu[,3]/mu(,1])
0.4576017
1.2426470

> exp (confint (mulmodell, matrix = TRUE))

log(mu([,4]/mu[,1])
0.03780334
1.39832590

2.5% 97.5 %
(Intercept) :1 0.51594383 2.75468631
(Intercept) :2 0.20060168 1.04385618
(Intercept) :3 0.01472052 0.09708164
educ:1l 1.02303836 1.16808091
educ:2 1.16470378 1.32580631
educ:3 1.30204812 1.50172279

> cbind (exp (coef (mulmodell) ), exp (confint (mulmodell)))

2.5% 97.5 %
(Intercept) :1 1.19216752 0.51594383 2.75468631
(Intercept) : 2 0.45760169 0.20060168 1.04385618
(Intercept) :3 0.03780334 0.01472052 0.09708164
educ:1 1.09315670 1.02303836 1.16808091
educ:2 1.24264702 1.16470378 1.32580631
educ:3 1.39832590 1.30204812 1.50172279

7.3.6 Model Fit Statistics
Testing the Overall Model Using the Likelihood Ratio Test

To test if the overall model is significant, we fit a null model with the intercept only
and compare the single-predictor model with the null model using the 1rtest ()
function. The null model is fitted using the vg1lm () function with the predictor as 1

fl;o:i the intercept in the model equation. The command and the output are displayed
ow.

> # Testing the overall model using the likelihood ratio test

> mulmodelO <- vglm(healthre ~ 1, multinomial (refLevel = 1), data=chp7.mul)
> summary (mulmodel0)

Call:

vglm(formula = healthre ~ 1, family = multinomial (refLevel = 1)
data = chp7.mul)

’

Pearson residuals:

Min 1Q Median 3Q Max
log(mu(,2]/muf,1]) -2.107 -0.4351 -0.3087 -0.3087 1.6649
log(mu(, 3] /muf,1]) -2.459 -0.6678 -0.6608 0.9287 0.9287
log(mu(,4]/mu[,1]) -2.094 -0.4218 -0.3025 -0.3025 1.6997
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Coefficients:

Estimate Std. Error z value Pr(>121)
(Intercept) :1 1.28610 0.10400 12.37 <2e-16 **x
(Intercept) :2 2.04715 0.09782 20.93 <2e-16 ***
(Intercept) :3 1.25518 0.10436 12.03 <2e-16 ***

Signif. codes: 0 ‘***’ 0,001 “**’ 0,01 “*’ 0.05 *.” 0.1 *’ 1

Names of linear predictors: log(mu[,2]/mu[,1]), log(mu[,3]/mul,1]),
log(mu[,4)/mu(,1])

Residual deviance: 4476.435 on 5616 degrees of freedom
Log-likelihood: -2238.218 on 5616 degrees of freedom
Number of Fisher scoring iterations: 5

No Hauck-Donner effect found in any of the estimates

Reference group is level 1 of the response

The 1rtest (mulmodel0, mulmodell) command compares the log-likelihood
statistics of the fitted model mulmodell and the null model mulmodel0 using the
likelihood ratio test.

> lrtest (mulmodel0, mulmodell)
Likelihood ratio test

Model 1: healthre ~ 1
Model 2: healthre ~ educ

#Df LogLik Df Chisq Pr (>Chisq)
1 5616 -2238.2
2 5613 -2166.7 -3 143.14 <:242er16 A %

Signdf.c.codess  0; ‘Ax*! 07001 P*%/ 0,0L %1 0:05 3% 0.1 %1 1

The null hypothesis of the test for the overall model is that the predictor variable does
not contribute to the model, and the alternative hypothesis is that the one-predictor
model is better than the null model with no independent variables. The likelihood ratio
chi-square test statistic LR xé) = 143.14, p < .001, which indicates that the overall
model with one predictor educ is significantly different from zero. Therefore, the one-
predictor model provides a better fit than the null model in predicting the logit or log
odds of being in a particular category relative to the base category.

Pseudo R?

We use the nagelkerke () function in the rcompanion package (Mangiafico, 2021)
to compute the pseudo R statistics for the single-predictor model. We load the package
first with 1ibrary (rcompanion) and then use nagelkerke (mulmodell).
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> # Pseudo R2 with nagelkerke ()
> library (rcompanion)

> nagelkerke (mulmodell)

$ Models"

Model: "vglm, healthre ~ educ, multinomial (refLevel = 1), chp7.mul"
Null: "vglm, healthre ~ 1, multinomial (refLevel = 1), chp7.mul"

$Pseudo.R.squared.for.model.vs.null
Pseudo.R.squared

McFadden 0.0319758

Cox and Snell (ML) 0.0735744

Nagelkerke (Cragg and Uhler) 0.0809962

$Likelihood.ratio.test

Df.diff LogLik.diff Chisqg p.value
3 ~71.569 143.14 7.9595e-31

$Number.of.observations
Model: 1873
Null: 1873

$Messages
[1] "Note: For models fit with REML, these statistics are based on refitting with ML"

$Warnings
[1] "None"

The McFadden A2 is .032, the Cox and Snell 22 is .074, and the Nagelkerke R? is .081.
The same results can be computed using the equations for these three pseudo R*
statistics. In the R commands below, LLM1 is the log-likelihood value for the single-
predictor model and LLO is the log-likelihood value for the null model. In addition,
McFaddenl is the object name for McFadden’s B2, CS1 for Cox and Snell’s &2, and
NG1 for Nagelkerke’s /2.

> LLM1 <- logLik(mulmodell)

> LLO <- logLik (mulmodel0)

> McFaddenl <- 1-(LLM1/LLO)

> McFaddenl

[1] 0.0319758

> CS1 <~ 1-exp (2* (LLO-LIM1) /1873)
> Cs1

[1] 0.07357443

> NG1 <- CS1/ (1-exp(2*LLO/1873))
> NG1

[1] 0.08099622
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The AIC and BIC statistics can also be computed from the AIC () and BIC()

functions. The output is shown as follows.

> AIC (mulmodell)
[1] 4345.297
> BIC (mulmodell)
[1] 4378.509

7.4 FITTING A MULTIPLE-PREDICTOR
MULTINOMIAL LOGISTIC REGRESSION
MODEL WITH R

7.4.1 The Multinomial Logistic Regression Model:

Multiple-Predictor M

odel

The command mulmodel2 <- vglm(healthre ~ educ + maritals +
female + wrkfull, multinomial (reflLevel = 1), data = chp7.mul)
tells R to predict the nominal response variable healthre from the four predictor
variables educ, maritals, female and wrkfull with multinomial logistic regres-
sion. In the vglm () function, the model equation is specified as healthre ~ educ +
maritals + female + wrkfull; the multinomial (refLevel = 1) argu-
ment specifies that the multinomial family is used to fit the model and the reference
level is the first level of healthre; and the data argument specifies data =
chp7.mul. The output is shown by the summary (mulmodelZ2) command.
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data=chp7.mul)
> summary (mulmodel2)

Call:

Pearson residuals:

log (muf,2]/muf,1]) =5.
log (muf,3]/mul,1]) -5.
log(mu[,4]/mul,1]) -5.

Coefficients:

Estimate
(Intercept) :1 0.02270
(Intercept) :2 -1.19945
(Intercept) :3 -3.63716

Min 1Q
057 -0.3768
982 -0.6924
734 -0.3810
Std. Error
0.45925
0.45236
0.51091

Median
-0.2919
-0.3757
-0.2745

z value

0.049
-2.652
-7.119

vglm(formula = healthre ~ educ + maritals + female + wrkfull,
family = multinomial (refLevel = 1), data = chp7.mul)

3Q
-0.2047
0.8763
-0.1603

Pr(>1zl)
0.960576
0.008013 **
1.09e-12 ***

> # Multiple-predictor multinomial logistic regression model with vglm() in VGAM
> mulmodel2 <- vglm(healthre ~ educ + maritals + female + wrkfull, multinomial (reflLevel = 1),

Max
3.343
2.003
7.289
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educ:l 0.08421 0.03483 2.417 0.015632 *
educ:2 0.19416 0.03403 5.706 1.16e-08 ***
educ:3 0.31509 0.03729 8.450 < 2616 ***
maritals:1l 0.38625 0.22994 1.680 0.093000 .
maritals:2 0.68849 0.21996 3.130 0.001747 **
maritals:3 0.64602 0.23401 2.761 0.005769 **
female:1 -0.02156 0.21283 -0.101 0.919298
female:2 0.16979 0.20413 0.832 0.405546
female:3 0.15659 0.21921 0.714 0.475009
wrkfull:1l 0.32714 0.23802 1.374 0.169321
wrkfull:2 0.95782 0.22646 4.230 2.34e-05 ***
wrkfull:3 0.82250 0.24018 3.424 0.000616 ***

Signif. codes: 0 ‘***’ 0,001 ‘**’ 0.01 **’ 0.05'.” 0.1 "1

Names of linear predictors: log(mu[,2]/mu[,1]), log(mu[,3]/mul,1]),
log (mu[,4]/mul,1])

Residual deviance: 4275.242 on 5604 degrees of freedom

Log-likelihood: -2137.621 on 5604 degrees of freedom

Number of Fisher scoring iterations: 6

No Hauck-Donner effect found in any of the estimates

Reference group is level 1 of the response

7.4.2 Interpreting R Output

The coefficients section (labeled Coefficients:) displays the parameter estimates for
the three intercepts and the four predictor variables. Since the multinomial logistic
regression model includes a series of binary logistic regression models, the table displays
the parameter estimates for the three binary logistic models comparing each category
versus the base category. These three equations, labeled log (mu[,2]/mul[,1]),
log(mu[,3]/mu[,1]),and log(mu[,4]/mul,1]), comparcmtegorics2with
1, categories 3 with 1, and categories 4 with 1, respectively. The estimated intercepts and
logit coefficients for these three sub-models are numbered 1, 2, and 3 in the output.

Based on the parameter estimates in the output, the three equations for the model can
be expressed as:

ln(__.i 8: i 3) =.023 + .084educ + .386maritals — .022female

+ .327wrkfull
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P(Y = 3)
T =1 = — 1.199 + .194educ + .688maritals + .170female

+ .958wrkfull

P(Y = 4)
In P(T-_"_l) = — 3.637 + .315educ + .646maritals + .157female

+ .823wrkfull

The first equation compares category 2 and category 1. Among the four predictor var-
iables, only educ is significant, whereas the other three predictor variables maritals,
female, and wrkfull are not significant in predicting the log odds of being in
category 2 versus category 1. The coefficient for educ, displayed as educ: 1, B = .084,
Wald z = 2.417. The associated p value, Pr (>]z|) < .05, so we reject the null
hypothesis and conclude that educ is significant in predicting the log odds of being in
category 2 versus categoryl. The coefficient for maritals, displayed as maritals:
1, B = .386, Wald z = 1.680, p > .05, which is not significant; the coefficient for
female, displayed as female: 1, B = —.022, Wald z = —.101, p > .05, which is not
significant, either; the coefficient for wrkfull, displayed as wrkfull:1, B = .327,
Wald z = 1.374, p > .05, which is not significant, either.

The second equation compares category 3 and category 1. The three predictor variables
educ, maritals, and wrkfull are significant, whereas female is not significant.
The predictor variable educ, displayed as educ: 2, B = .194, Wald z = 5.706, p < .001.
For the predictor variable maritals, displayed as maritals:2, B = .688, Wald z =
3.130. The associated p value, P>|z| < .01, so we reject the null hypothesis; for
wrkfull, displayed as wrkfull:2, B = .958, Wald z = 4.230, p < .001; however, for
female, displayed as female: 2, 8 = .170, Wald z = .830, p = 406, so the coefficient
for female is not significanty different from 0.

The third equation compares category 4 and category 1. The three predictor variables
educ, maritals, and wrkfull are significant, whereas female is not significant.
The predictor variable educ, displayed as educ: 3, is also significant. For educ: 3,
B = .315, Wald z = 8.450, p < .001. For the predictor variable maritals, displayed
asmaritals:3, B = .646, Wald z = 2.761, p < .01, so we reject the null hypothesis;
for wrkfull, displayed as wrkfull:3, B = .823, Wald z = 3.424, p < .001;
however, for female, displayed as female: 3, B = .157, Wald z = .714, p > .05, so
the coefficient for female is not significantly different from 0.

We use the coef (mulmodel2, matrix = TRUE) command to extract the
coefficients table for the three underlying binary models which compare categories 2
with 1, categories 3 with 1, and categories 4 with 1, respectively. We also use the
confint (mulmodel2, matrix = TRUE) command to compute the corre-
sponding confidence intervals. The output is omitted here.

We request the odds ratios of being in a particular category versus the base category and
the corresponding confidence intervals using the exp (coef (mulmodel2,
matrix = TRUE) ) and the exp (confint (mulmodel2, matrix = TRUE))
commands, respectively. The results are combined with the cbind () function.
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> exp (coef (mulmodel2, matrix = TRUE))

(Intercept)
educ
maritals
female
wrkfull

log(muf,2]/muf,1])

1.0229608
1.0878549
1.4714529
0.9786676
1.3869905

> exp (confint (mulmodel2, matrix = TRUE))

(Intercept) :1
(Intercept) : 2
(Intercept):3
educ:1

educ:2

educ:3
maritals:1
maritals:2
maritals:3
female:1
female:2
female:3
wrkfull:1
wrkfull:2
wrkfull:3

2.5%
0.415858123
0.124176341
0.009672075
1.016061645
1,135942132
1.273795085
0.937605488
1.293540526
1.206069994
0.644877457
0.794293786
0.761058336
0.869896953
1.671903678
1.421546528

97.5 %
2.51636007
0.73136819
0.07166171
1.16472089
1.29803614
1.47428923
2.30925872
3.06362029
3.01826272
1.48522842
1.76804926
1.79719349
2.21146033
4.06198751
3.64460269

log(mu[,3]/mu(,1])

0.3013613
1.2142874
1.9907077
1.1850530
2.6060030

log(muf,4]/muf(,1])

0.
1.37038037
1.90794028
1.

2.27617493

02632712

16951660

> cbind (exp (coef (mulmodel2)), exp (confint (mulmodel2)))

2.5 % 97.5 %
(Intercept):1 1.02296079 0.415858123 2.51636007
(Intercept) :2 0.30136129 0.124176341 0.73136819
(Intercept):3 0.02632712 0.009672075 0.07166171
educ:1 1.08785487 1.016061645 1.16472089
educ:2 1.21428742 1.135942132 1.29803614
educ:3 1.37038037 1.273795085 1.47428923
maritals:1 1.4714529%0 0.937605488 2.30925872
maritals:2 1.99070766 1.293540526 3.06362029
maritals:3 1.90794028 1.206069994 3.01826272
female:1 0.97866763 0.644877457 1.48522842
female:2 1.18505297 0.794293786 1.76804926
female:3 1.16951660 0.761058336 1.79719349
wrkfull:1 1.38699048 0.869896953 2.21146033
wrkfull:2 2.60600304 1.671903678 4.06198751
wrkfull:3 2.27617493 1.421546528 3.64460269

The results of the odds ratios across the three binary comparisons are summarized in
Table 7.2.

7.4.3 Interpreting the Odds Ratios of Being in a Category j
Versus the Base Category 1

The odds ratio of being in a particular category compared with the base category can be
interpreted as the change in the odds of being in that category versus the base category for
a one-unit increase in the predictor variable when holding other predictors constant. Recall
there are / — 1 binary comparisons for a nominal response variable with / categories.
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TABLE 7.2 @ Odds Ratios for All Four Predictor Variables Across Three

Comparisons (Y = jvs. Y = 1)

Category Comparisons | Y=2vs. Y =1 Y=3vs.Y=1 Y=4vs.Y=1

Variables OR

‘Educ 1.088* 1214 2 1370"
Maritals 1471 1.9917 1.908™
Female 979 1185 Wk
Wrkfull 1.387 2.606™ 2.276"
*p < 0.05

**p < 0.01

The odds ratio for each predictor needs to be interpreted across three comparisons. For
educ, the odds ratios of being in category 2 versus category 1, category 3 versus
category 1, and category 4 versus category 1 are 1.088, 1.214, and 1.370, respectively.
The results indicate that the odds of being in category 2 versus the base category,
category 3 versus the base category, and category 4 versus the base category increase by
a factor of 1.088, 1.214, and 1.370, respectively, for a one-unit increase in the educ
predictor when holding all other predictors constant.

Formaritals, the odds ratios for the three binary comparisons (i.e., categories 2 vs.
1,3 vs. 1, and 4 vs. 1) are 1.471, 1.991, and 1.908, respectively. OR(2,1) = 1.471,
2 > .05, which indicates that there is no relationship between maritals and the
odds of being in category 2 versus the base category 1. The odds ratios for the other two
comparisons are significant, OR(3,1) = 1.991, OR(4,1) = 1.908, which indicates that
the odds of being in category 3 versus the base category and category 4 versus the base
category for the married are 1.991 and 1.908 times as large as the odds for the
unmarried, respectively, when holding other predictors constant.

The odds ratios for wrkfull can be interpreted in the similar way. The odds ratios
for three binary comparisons (i.e., categories 2 vs. 1, 3 vs. 1, and 4 vs. 1) are 1.387,
2.606, and 2.276, respectively. OR(2,1) = 1.387, p > .05, which indicates that
there is no relationship between wrkfull and the odds of being in category 2
versus the base category 1. The odds ratios for the other two comparisons are sig-
nificant. The odds of being in category 3 versus the base category and category 4
versus the base category for those working full time are 2.606 and 2.267 times as
large as the odds for those not working full time, respectively, when holding other
predictors constant.

With regard to female, none of the odds ratios for the binary comparisons are sig-
nificant. It indicates that being female does not impact the odds of being in any
particular category versus the base category when holding other predictors constant.
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7.4.4 Model Fit Statistics
Testing the Overall Model Using the Likelihood Ratio Test

To test if the overall model is significant, we compare the multiple-predictor model
with the null model using the 1rtest () function. The 1rtest (mulmodel0,
mulmodel2) command compares the log-likelihood statistics of the fitted model
mulmodel2 and the null model mulmodel0 using the likelihood ratio test. The

resulting output is displayed below.

> # Testing the overall model using the likelihood ratio test
> lrtest (mulmodel0, mulmodel2)
Likelihood ratio test

Model 1: healthre ~ 1
Model 2: healthre ~ educ + maritals + female + wrkfull

#Df LogLik Df Chisq Pr (>Chisq)
1 5616 -2238.2
2 5604 -2137.6 -12 201.19 < 2.2e-16 ***

Silgnificodess: ‘0 > **F0 001" '**7 0,01 **770.05 *.”0.1 * *

The likelihood ratio test 7, = 201.19, p < .001, indicates that the full model with
the four predictors provides a better fit than the null model with no independent
variables in predicting the nominal response variable.

Pseudo R?

The nagelkerke (mulmodel2) command computes the three types of pseudo
statistics and the likelihood ratio test statistic for the overall multiple-predictor model.
The output is omitted here. To obtain the same results, we can also compute the three
types of pseudo R* statistics with their equations for the multiple-predictor model as
follows.

> LLM2 <- logLik (mulmodel2)

> McFadden2 <- 1-(LLM2/LL0)

> McFadden2

[1] 0.04494503

> C82 <- 1-exp(2* (LLO-LLM2) /1873)
> CSs2

[1] 0.1018496

> NG2 <- CS2/ (1-exp (2*LL0/1873))
> NG2

[1] 0.1121237

In the output, LLM2 is the log-likelihood value for the multiple-predictor model and
LLO is the log-likelihood value for the null model. The McFadden R? is .045, the Cox
and Snell £ is .102, and the Nagelkerke R is .112.
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AIC and BIC Statistics

The AIC (mulmodel2) and BIC (mulmodel2) commands produce the AIC and
BIC statistics.

> AIC (mulmodel?2)
[1] 4305.241
> BIC (mulmodel?2)
[1) 4388.271

The AIC and BIC statistics are 4,305.241 and 4,388.271, respectively. Recall the AIC
and BIC in the single predictor model are 4,345.297 and 4,378.509, respectively.
Compared with the single-variable model, both AIC and BIC indicate that the
multiple-predictor model fits the data better.

7.4.5 Interpreting the Predicted Probabilities With the
ggpredict () Function in the ggeffects Package

By using the ggpredict () function in the ggeffects package (Liidecke,
2018b), we can compute the predicted probabilities for each category of the nominal
response variable at specified values of the predictor variables. The command
pr.mul2m <- ggpredict(mulmodel2, terms = "educ[l2, 14,
16]", ci = NA) tells R to compute the predicted probabilities for each category of
the nominal response variable using the ggpredict () function. The argument
inside the function includes the estimated model, mulmodel2, the terms =
"educ[12, 14, 16]" option, which specifies the predictor variable educ at the
values of 12, 14, and 16 when holding the other predictor variables at their means, and
the ci = NA option for not specifying the confidence intervals. The terms option
can specify up to four variables, including the second to fourth grouping variables.
Please also note that the confidence intervals can only be obtained for the cumulative
probabilities, so the ci = NA option is needed there. The output is assigned to the
object named pr.mul2m.

> library(ggeffects) A 3
> pr.mul2m <- ggpredict (mulmodel2, terms="educ[12, 14, 16]", ci=NA)
> pr.mul2m

# Predicted probabilities of healthre

# Response Level =1

educ | Predicted
12 | 0.07
14 | 0.05
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# Response Level = 2

educ | Predicted
12 | 0.26
14 | 0.22
16 | 0.17

educ | Predicted
12 | 0.50
14 | 0.51
16 | 0.51

educ | Predicted
12 | 0.17
14 | 0.22
16 | 0.28

Adjusted for:

* maritals = 0.44
* female = 0.56
* wrkfull = 0.47

> plot (pr.mul2m)

When educ = 12, and the other predictor variables are held at their means
(maritals = .44, female = .56, and wrkfull = .47), the predicted probability
for the response level 1 (i.e., Y = 1) is .07.

When educ = 14, and the other three predictor variables are held at their means, the
predicted probability for ¥ = 1 is .05.

When educ = 16, and the other predictor variables are held at their means, the
predicted probability for ¥ = 1 is .03.

The predicted probabilities for all the four response levels are plotted using
plot (pr.mul2m). Figure 7.1 shows the predicted probabilities of being in each
category (i.e., Y = 1, 2, 3, and 4).

The graph shows that with the increase of the years of education, the probabilities of
being in poor and fair health condition (categories 1 and 2) decrease. In other words,
people with higher levels of education are less likely associated with poor and fair health
conditions. In addition, with the increase of the years of education, the probabilities of
being in good and excellent health condition (categories 3 and 4) increase. In other
words, people with a higher level of education are more likely to be in good and
excellent health condition.



Chapter 7 m Multinomial Logistic Regression Models 291

FIGURE 71 @ Predicted Probabilities for educ at 12. 14, and 16
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With the terms = c("educ[12, 14, 161", "maritals") argument, the
predicted probabilities for educ at 12, 14, and 16 can be grouped by maritals.
The output is assigned to the object named pr.mulZ2.

>pr.mul2 <- ggpredict (mulmodel2, terms=c ("educ[12, 14, 16]", "maritals"), ci=NA)
> pr.mul2

# Predicted probabilities of healthre

# Response Level = 1
# maritals =0

educ | Predicted
12 | 0.09
14 | 0.06
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# Response Level = 2
# maritals = 0

educ | Predicted
12 | 0.28
14 | 0.24
16 | 0.19

# Response Level = 3
# maritals = 0

educ | Predicted
12 | 0.47
14 | 0.49
16 | 0.49

# Response Level = 4
# maritals = 0

educ | Predicted
12 | 0.16
14 | 0.22
16 | 0.28

# Response Level = 1
# maritals = 1

educ | Predicted
12 | 0.05
14 | 0.03
16 | 0.02

# Response Level = 2
# maritals = 1

educ | Predicted
12 | 0.24
14 | 0.19
16 | 0.15

# Response Level = 3
# maritals = 1

educ | Predicted
12 I 0.53
14 I 0.54
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# Response Level = 4
# maritals =1

educ | Predicted

BRI S S S -
| 12 I 0.18
14 | 0.23

16 | 0.29

Adjusted for:
* female = 0.56
* wrkfull = 0.47

> plot(pr.mul2)

The results are plotted with plot (pr.mul2). Figure 7.2 shows the predicted
probabilities of being in Categories 1, 2, 3, and 4 for educ by the grouping variable
maritals.

FIGURE 7.2 @ Predicted Probabilities of Being in Categories 1, 2, 3, and 4 for educ by the

Grouping Variable maritals
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7.4.6 Model Comparisons Using the Likelihood Ratio Test

The likelihood ratio test, or the deviance difference test, is used to compare the mul-
tiple-predictor model and the one-predictor model. In the 1rtest (mulmodell,
mulmodel2) syntax, mulmodell and mulmodel2 are the two models being
compared. The following output is displayed.

— e e —— — — 1

> # Model comparison with the likelihood ratio test |
> 1lrtest (mulmodell, mulmodel2)
Likelihood ratio test

Model 1: healthre ~ educ
Model 2: healthre ~ educ + maritals + female + wrkfull

#Df LogLik Df Chisqg Pr (>Chisq)
: 5613 -2166.7
2 5604 -2137.6 -9 58.056 3.171e-09 ***
Signif.'codess 0 '***! 0,001 **%! 0.01'*** 0.05 *.> 0. M}

The likelihood ratio test, X{y) = 58.056, p < .001, which indicates that the full model
with the four predictor variables fits the data better than the single-predictor model.

7.5 MULTINOMIAL LOGISTIC REGRESSION
WITH THE multinom () FUNCTION IN THE
nnet PACKAGE

We can also use the multinom () function in the nnet package to fit multinomial
logistic regression models. Since nnet is a user-written package, you need to install it
first by typing install.packages (“nnet”) and then load the package by
typing library (nnet).

In the following example, the mulmodel2b <- multinom (healthre ~ educ +
maritals + female + wrkfull, data = chp7.mul) command tells R to
predict-the nominal response variable heal thre from the four independent variables. In
the model formula for the multinom () function, the dependent variable healthre
and the four predictor variables are separated by the tilde (~). The four predictor variables
include, educ, maritals, female, and wrkfull which are connected by plus (+)
symbols. We also specify the data arguments data = chp7.mul in the function. The
fitted model is named mulmodel2b. The following output is shown by the sum-
mary (mulmodel2b) command. Please note that the default reference category or base
category in the function is the lowest category. If you would like to change the reference
category, you need to use the relevel () function to specify it before model fitting. For
example, healthre <- relevel (healthre, ref = 4) defines category 4 to be
the base category for the nominal response variable.



> # Using multinom() in nnet

> library (nnet)

> mulmodel2b <- multinom(healthre ~ educ + mari

# weights: 24 (15 variable)
initial value 2596.529338
iter 10 value 2150.935582
iter 20 value 2137.622895
final value 2137.620746

converged

> summary (mulmodel2b)

Call:
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tals + female + wrkfull, data=chp7.mul)

multinom(formula = healthre ~ educ + maritals + female + wrkfull,
data = chp7.mul)

Coefficients:

(Intercept) educ maritals female wrkfull
2 0.02279756 0.08420084 0.3861814 -0.02155419 0.3271689
3 -1.19940172 0.19415272 0.6884447 0.16981115 0.9578518
B -3.63712240 0.31508366 0.6459960 0.15661149 0.8225368
Std. Errors:

(Intercept) educ maritals female wrkfull
2 0.4592498 0.03483414 0.2299392 0.2128258 0.2380238
3 0.4523597 0.03402868 0.2199547 0.2041307 0.2264614
4 0.5109066 0.03729027 0.2340112 0.2192057 0.2401842
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Residual Deviance: 4275.241
AIC: 4305.241

The R output includes the call of the model command, the coefficients, the standard
errors, the residual deviance, and the AIC statistic. The call shows the R command
for the model. The second section shows the coefficients table including the
parameter estimates for the intercept and the four predictor variables. The third
section shows the standard errors. Finally, the deviance residuals and AIC are displayed
at the end.

In the coefficients section (labeled Coefficients:), the first column lists 2, 3, and
4 which are the categories of the nominal response variable. They are the outcomes of
these three binary logistic regression models which compare categories 2 with 1, cat-
egories 3 with 1, and categories 4 with 1, respectively. For example, when the nominal
response variable is 2, the binary model compares categories 2 with 1. The first row lists
the intercept and the four predictor variables. Each predictor has three coefficients
for the underlying binary models since the reference level is category 1. In addition, the
three intercepts are also estimated for the binary models.

The standard errors section (labeled Std. Errors:) provides the corresponding
standard errors of the coefficients above. Please note that the Wald z statistics and the
associated p values are not reported in the output.
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We can compute the Wald z statistics and the associated p values with the
following command z <- summary (mulmodel2b) $coefficients/summary
(mulmodel2b) $standard.errors. We first compute the Wald z statistics by
dividing the coefficients to their standard errors and name the object z. We then
compute the associated p values with the command p <- (1-pnorm(abs (z),

O In=2.

> z <- summary (mulmodel2b) $coefficients/summary (mulmodel2b) $standard.errors

>z

(Intercept) educ maritals female wrkfull
2 0.04964088 2.417193 1.679493 -0.1012762 1.374522
3 -2.65143354 5.705561 3.129938 0.8318747 4.229647
4 -7.11895783 8.449488 2.760535 0.7144498 3.424608

> p <- (1-pnorm(abs(z),0,1))*2

>p

(Intercept) educ maritals female wrkfull
2 9.604086e-01 1.564071e-02 0.093055936 0.9193312 1.692796e-01
3 8.015089%e-03 1.159605e-08 0.001748430 0.4054797 2.340586e-05

4 1.087352e-12 0.000000e+00 0.005770681 0.4749491 6.156865e-04

The logit coefficients can be extracted with coef (mulmodel2b).

> coef (mulmodel2b)

(Intercept) educ maritals female wrkfull
2 0.02279756 0.08420084 0.3861814 -0.02155419 0.3271689
3 -1.19940172 0.19415272 0.6884447 0.16981115 0.9578518
4 -3.63712240 0.31508366 0.6459960 0.15661149 0.8225368

The odds ratios can be obtained by using exp (coef (mulmodel2b) ). We also use

the exp (confint (mulmodel2b)) command to obtain the corresponding confi-
dence intervals.

> exp (coef (mulmodel2b))

(Intercept) educ maritals female wrkfull
2 1.0230594 1.087847 1.471352 0.9786764 1.387036
3 0.3013745 1.214282 1.990617 1.1850810 2.606092
4 0.0263280 1.370374 1.907886 1.1695411 2.276267

> exp (confint (mulmodel2b))
2
r

2.5% 5 ¥
(Intercept) 0.4158979 2.516604
educ 1.0160547 1.164713
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maritals 0.9375444 2.309091
female 0.6448838 1.485241
wrkfull 0.8699243 2.211535
& 3

2.5 % 97.5 %
(Intercept) 0.1241816 0.7314013
educ 1.1359369 1.2980300
maritals 1.2934866 3.0634692
female 0.7943130 1.7680901
wrkfull 1.6719583 4.0621322
I | 4

~ LR 97.5 %

(Intercept) 0.00967238 0.0716642
educ 1.27378919 1.4742822
maritals 1.20604029 3.0181662
female 0.76107465 1.7972304
wrkfull 1.42160204 3.6447554

We can use the ggpredict () function in the ggeffects package to compute the
predicted probabilities for each category of the nominal response variable at the specified
values of the predictor variables. The same command introduced in the previous section
on the vglm () function in this chapter can be used. The output is omitted here.

7.6 MULTINOMIAL LOGISTIC REGRESSION
WITH THE mlogit () FUNCTION IN THE
mlogit PACKAGE

We can also use the mlogit () function in the mlogit package to fit multinomial
logistic regression models. Since mlogit is a user-written package, you need to install
it first by typing install.packages (“mlogit”) and then load the package by
typing library (mlogit).

Different from the vglm () and multinom() functions, we need to follow two
steps to use the mlogit () function. First, before fitting the model, we need to create
the dataset in the wide format by using the mlogit.data () function so that the
mlogit () function can load the data. In the command chp7 <- mlogit.data
(chp7.mul, choice = "healthre"”, shape = "wide"), we specify the
data chp7.mul, followed by the choice = "healthre" argument for the
nominal response variable and the shape = "wide" argument. The new data
are named chp7. Second, we run the model command. The model equation for the
mlogit () function is slightly different from those for the vglm() and multi-
nom () functions. In the following example, the mulmodel2c <- mlogit
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(healthre ~ 1 | educ + maritals + female + wrkfull, reflevel =1,
data = chp7) command tells R to predict the nominal response variable
healthre from the intercept and four independent variables. In the model formula
for the mlogit () function, the dependent variable healthre and the intercept are
separated by the tilde (~); 1 is the intercept, which is separated from the predictor
variables by the vertical line (| ); the four predictor variables include, educ, maritals,
female, and wrkfull which are connected by plus (+) symbols. The reflevel =1
argument defines the reference level. We also specify the data arguments data = chp7
in the function. The fitted model is named mulmodel2c. The following output is
shown by the summary (mulmodel2c) command.

> # Using mlogit() in mlogit

> library(mlogit)

> chp7 <- mlogit.data (chp7.mul, choice="healthre", shape="wide")

> mulmodel2c <-mlogit (healthre ~ 1 | educ + maritals + female + wrkfull, reflevel =1,
data=chp7)

> summary (mulmodel2c)

Call:
mlogit (formula = healthre ~ 1 | educ + maritals + female + wrkfull,
data = chp7, reflevel = 1, method = "nr")

Frequencies of alternatives:

1 2 3 4
0.063001 0.227977 0.487987 0.221036

nr method

6 iterations, Oh:0m:1s

g’ (-H) *-1g = 4.62E-05

successive function values within tolerance limits

Coefficients :
Estimate Std. Error z-value Pr(>1z|)

2: (intercept) 0.022702 0.459249 0.0494 0.960575
3: (intercept) ~1.199445 0.452359 -2.6515 0.008013 **
4: (intercept) =3.637155 0.510906 -7.1190 1.087e-12 **x*
2:educ 0.084208 0.034834 2.4174 0.015632 *
3:educ 0.194157 0.034029 5.7057 1.15%9e-08 ***
4:educ 0.315088 0.037290 8.4496 < 2.2e-16 ***
2:maritals 0.386250 0.229941 1.6798 0.093001 .
3:maritals 0.688490 0.219957 3.1301 0.001747 **
4:maritals 0.646024 0.234013 2.7606 0.005769 **
2:female -0.021563 0.212826 -0.1013 0.919298
3:female 0.169787 0.204131 0.8318 0.405546
4:female 0.156590 0.219206 0.7144 0.475009
gfwrkfull 0.327136 0.238023 1.3744 0.169322
4:::§uii 0.957817 0.226461 4,2295 2.342e-05 ***

twrkfu 0.822496 0.240184 3.4244 0.000616 ***

Signif. codes: 0 ‘**#s 0.001 “**r 0,01 ‘*# 0 Q5 v, ¢ 0.2 )%

Log-Likelihood: -2137.6
McFadden R*2: 0.044945
Likelihood ratio test :

chisq = 201.19 (p.value = < 2,22e-16)
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The R output includes the call of the model command, the frequencies of alterna-
tives, the estimation method, the coefficients section, the log likelihood value, the
McFadden R?, and the likelihood ratio test statistic. The call shows the R command
for the model. The second section shows the Newton-Raphson method for maximum
likelihood estimation. The third section shows the coefficients table including the
parameter estimates for the intercept and the four predictor variables. Finally, the log
likelihood value, the McFadden R?, and the likelihood ratio test statistic are displayed
at the end.

The coefficients section (labeled Coefficients:) displays the parameter estimates
for the intercepts and the predictor variables, their standard errors, the Wald z statistics,
and the associated p values. It displays the parameter estimates for the three binary
logistic models comparing each category with the base category 1. For example, the
three coefficients for educ are displayed as 2:educ, 3:educ, and 4:educ,
We use the coef (mulmodel2c) command to extract the logit coefficients and use
the confint (mulmodel2c) command to obtain the confidence intervals. The
output is omitted here.

The odds ratios can be obtained with exp (coef (mulmodel2c) ). We also use the
exp (confint (mulmodel2c)) command to obtain the corresponding confidence
intervals. Both results are combined with the cbind () function.

> exp (coef (mulmodel2c))

2: (intercept) 3: (intercept) 4: (intercept) 2:educ 3:educ
1.02296127 0.30136144 0.02632714 1.08785483 1.21428738
4:educ 2:maritals 3:maritals 4:maritals 2:female
1.37038032 1.47145243 1.99070700 1.90793964 0.97866759
3:female 4:female 2:wrkfull 3:wrkfull 4 :wrkfull
1.18505292 1.16951655 1.38698996 2.60600205 2.27617406

> exp (confint (mulmodel2c) )

2.5 % 97.5 %
.415858299 2.51636139
.124176395 0.73136860
.009672079 0.07166175
.016061603 1.16472085
.135942082 1.29803610
4:educ .273795029 1.47428918
2:maritals .937605127 2.30925811

2: (intercept) 0
0
0
: §
1
1
0

3:maritals 1.293540013 3.06361947
b :
0
0
0
0
:
1

3: (intercept)
4: (intercept)
2:educ
3:educ

4:maritals .206069519 3.01826190

2:female .644877409 1.48522840
3:female .794293723 1.76804925
4:female .761058277 1.79719347
2:wrkfull .869896566 2.21145965

.671902920 4.06198627
.421545886 3.64460156

3:wrkfull
4:wrkfull
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> cbind (exp (coef (mulmodel2c)), exp (confint (mulmodel2c)))

2.58 97.5 %
2: (intercept) 1.02296127 0.415858299 2.51636139
3: (intercept) 0.30136144 0.124176395 0.73136860
4: (intercept) 0.02632714 0.009672079 0.07166175
2:educ 1.08785483 1.016061603 1.16472085
3:educ 1.21428738 1.135942082 1.29803610
4:educ 1.37038032 1.273795029 1.47428918
2:maritals 1.47145243 0.937605127 2.30925811
3:maritals 1.99070700 1.293540013 3.06361947
4:maritals 1.90793964 1.206069519 3.01826190
2:female 0.97866759 0.644877409 1.48522840
3:female 1.18505292 0.794293723 1.76804925
4:female 1.16951655 0.761058277 1.79719347
2:wrkfull 1.38698996 0.869896566 2.21145965
3:wrkfull 2.60600205 1.671902920 4.06198627
4:wrkfull 2.27617406 1.421545886 3.64460156

The ggpredict() function in the ggeffects package also works with the
mlogit () function. The output is omitted here.

7.7 MAKING PUBLICATION-QUALITY TABLES

7.7.1 Presenting the Results of the vglm Models Using
the texreg Package

The stargazer () function currently cannot directly produce the results table
from the vglm models, so we use the screenreg () and htmlreg () functions
from the texreg package (Leifeld, 2013). Since the package has been installed in
preceding chapters, we only need to load the package by typing 1ibrary (texreg).

After we use the vglm () function to fit the single-predictor model mulmodell
and the multiple-predictor model mulmodel2, we create a table containing
the results of the both model with the following command: screenreg
(list (mulmodell, mulmodel2)). In the screenreg () function, we
specify the two model objects to be presented with the 1ist () function. The
output is a plain text table.

> # Presenting the results of the multinomial logistic Models using the texreg

package

> library (texreg)

Version: 183749

Date: 2020-06-17

Author: Philip Leifeld (University of Essex)

> screenreg (list (mulmodell, mulmodel2))
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S S s s E s Es s SSCS s EsSSSSsssssmsssmmo e ————
Model 1 Model 2
(Intercept) :1 0.18 0.02
(0.43) (0.46)
(Intercept) :2 -0.78 =1.2Q0 %%
(0.42) (0.45)
(Intercept) :3 =3.28 *** ~3,64 k&%
(0.48) (0.51)
educ:1 0.09 ** 0.08 *
(0.03) (0.03)
educ:2 0.22 *%* 0.19 %%k
(0.03) (0.03)
educ:3 0.34 %%+ QB2 " h®
(0.04) (0.04)
maritals:1 0.39
(0.23)
maritals:2 05G9: %%
(0.22)
maritals:3 0265 %%
(0.23)
female:1 -0.02
(0.21)
female:2 0.17
(0.20)
female:3 0.16
(0.22)
wrkfull:1 0.33
(0.24)
wrkfull:2 0,96 %2>
(0.23)
wrkfull:3 0.82 %%
(0.24)
Log Likelihood -2166.65 -2137.62
DF 5613 5604
Num. obs 5619 5619
*EP<0.001; **p < 0.01;:*p<0.05
> htmlreg(list(mulmodell, mulmodel2), file="chap7mul.doc", doctype=TRUE,
html.tag=TRUE, head.tag=TRUE)
The table was written to the file 'chap7mul.doc’ .

We can also use the htmlreg () function to create a regression table for the estimated
results and save it to a Microsoft Word file named chap7mul . doc with the following
command: htmlreg (list (mulmodell, mulmodel?2), file = "chap7mul.
doc", doctype = TRUE, html.tag = TRUE, head.tag = TRUE). It
automatically produces Table 7.3, as shown here in its original format, presenting the
results of both the single-predictor and the multiple-predictor multinomial logistic
regression models.
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TABLE 7.3 @ Results of the Multinomial Logistic Regression Models: Single-

Predictor Model and Multiple-Predictor Models (Shown in Original Format
Generated by R)

(Intercept):1 0.18 0.02

(0.43) (0.46)

{intercept):2 —-0.78 -1.20"
(0.42) (0.45)
(Intercept):3 ~3.28™ ~3.64™

(0.48]) (0.51)

educ:1 0.09" 0.08*

(0.03) (0.03)

educ:2 0.22"" 0.19™

educ:3 [0.03) (0.03)

0.34°" 0.32”

maritals:1 [0.04) (0.04)
0.39

maritals:2 (0.23)

0.69™

maritals:3 (0.22)

0.65"

female:1 (0.23)

—0.02

female:2 0.21)
0.17

female:3 10.20)
0.16

wrkfull:1 (0.22)
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Table 7.3 (Continued)

—2166.65

5613
A R N Ry T S POy e Ry SRRRCEIES
Num.obs. 5619 | Gk
***p < 0.001
**p < 0.01
*p < 0.05

7.8 REPORTING THE RESULTS

Reporting the results for multinomial logistic regression is similar to that used for
binary logistic regression. The following are the generic guidelines for reporting the
results. You may need to adjust your writing since your discipline or journals may have
different requirements.

First, describe the multinomial logistic regression model, the nominal response variable
and the independent variables, and your research hypothesis or the purpose of your
study. Include a couple of sentences explaining why this model is appropriate for the
analysis.

Second, if available, report the likelihood ratio test statistic for the model and the
associated p value, followed by the interpretation on whether the fitted model is better
than the null model. If more than one model is developed, then compare models using
likelihood ratio test statistics and/or the AIC and BIC statistics.

Third, report the parameter estimates for the predictor variables, their standard
errors, the associated p values in a table. Since a multinomial logistic regression
model includes / — 1 binary comparisons, label them in the table. If more than
one model is fitted, then the results of all the competing models need to be
presented in a table. In addition, report the odds ratios or relative risk ratios for
each predictor in the table or text and interpret the results. The following is an
example of summarizing the results for the multinomial logistic regression model
illustrated previously.
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The multinomial logistic regression analysis was conducted to predict the
ordinal outcome variable, health status, from a set of predictor variables,
such as marital status, years of education, gender, and working status.
Although the multinomial logistic regression model is normally used to
estimate the nominal response variables, it is an alternative to estimate
ordinal response variables when the proportional odds assumption is
violated.

The likelihood ratio test for the fitted model X(zm = 151.28, p < .001, which
indicated that the four-predictor model provided a better fit than the null
model with no independent variables in predicting the logit of being in any
other category of health status compared with being in the base category
(i.e., poor health).

Table 7.2 displays the parameter estimates for the three binary logistic
models comparing each category with the base category since the multi-
nomial logistic regression model is treated as a series of binary logistic
regression models. These three equations compare categories 2 with 1, 3
with 1, and 4 with 1, respectively.

For educ, the odds ratios of being in category 2 versus category 1,
category 3 versus category 1, and category 4 versus category 1 are 1.088,
1.214, and 1.370, respectively. The results indicate that the odds of being in
category 2 versus the base category, category 3 versus the base category,
and category 4 versus the base category increase by a factor of 1.088, 1.214,
and 1.370, respectively, for a one-unit increase in the educ predictor when
holding all other predictors constant.

For maritals, the odds ratios for the three binary comparisons li.e.,
categories 2 vs. 1, 3 vs. 1, and 4 vs. 1) are 1.471, 1.991, and 1.908, respec-
tively. OR(2,1) = 1.471, p > .05, which indicates that there is no relationship
between maritals and the odds of being in category 2 versus the base
category 1. The odds ratios for the other two comparisons are significant,
OR(3,1) = 1.991, ORI(4,1]) = 1.908, which indicates that the odds of being in
category 3 versus the base category and category 4 versus the base category
for the married are 1.991 and 1.908 times as large as the odds for the
unmarried, respectively, when holding other predictors constant.

The odds ratios for wrkfull can be interpreted in the similar way. The
odds ratios for three binary comparisons [i.e., categories 2 vs. 1, 3 vs. 1, and
4 vs. 1) are 1.387, 2.606, and 2.276, respectively. OR(2,1] = 1.387, p > .05,
which indicates that there is no relationship between wrkfull and the odds
of being in category 2 versus the base category 1. The odds ratios for the
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other two comparisons are significant. The odds of being in category 3 versus
the base category and category 4 versus the base category for those working
full time are 2.606 and 2.267 times as large as the odds for those not working
full time, respectively, when holding the other predictors constant.

With regard to female, none of the odds ratios for the binary compari-
sons are significant. It indicates that being female does not impact the odds
of being in any particular category versus the base category when holding
other predictors constant.

7.9 SUMMARY OF R COMMANDS IN
THIS CHAPTER

# Chap 7 R Script
# Remove all objects
rm(list = 1s(all = TRUE))

# The following user-written packages need to be installed first by using install.packages (* ”) and then
by loading it with library()

# library (VGAM) # It is already installed for Chapter 4
# library (rcompanion) # It is already installed for Chapter 3
# library (ggeffects) # It is already installed for Chapter 2
# library (texreq) # It is already installed for Chapter 4

# library (nnet)
# library(mlogit)

# Import the GSS 2016 data

library (foreign)

chp7.mul <- read.dta("C:/CDA/gss2016.dta")
chp7.mul$healthre <- factor (chp7.mul$healthre)
chp7.mul$educ <- as .numeric (chp7.mul$educ)
chp7.mul$wrkfull <- as.numeric(chp7.mu1$wrkfull)
chp7.mul$maritals <- as .numeric (chp7 .mul$maritals)
attach (chp7.mul)

# One-predictor multinomial logistic regression model with vglm() in VGAM

library (VGAM)
mulmodell <- vglm(he
summary (mulmodell)
coef (mulmodell, matrix = TRUE)

confint (mulmodell, matrix = TRUE)

exp (coef (mulmodell, matrix = TRUE) )
exp(conﬁnt(mulmodell, matrix = TRUE))
cbind (exp (coef (mulmodell) ), exp (confint (mulmodell)))

althre ~ educ, multinomial(refLevel =1), data=chp7.mul)
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# Testing the overall model using the likelihood ratio test

mulmodel0 <- vglm(healthre ~ 1, multinomial (refLevel = 1), data=chp7.mul)
summary (mulmodelO)

lrtest (mulmodel0O, mulmodell)

4 Pseudo R2 with nagelkerke ()
library (rcompanion)
nagelkerke (mulmodell)

# Pseudo R2 with equations

LIM1 <- logLik (mulmodell)

LLO <- logLik (mulmodel0)
McFaddenl <- 1-(LLM1/LLO)
McFaddenl

CS1 <- 1-exp (2* (LLO-LLM1) /1873)
Ccs1

NG1 <- CS1/(1-exp (2*LL0/1873))
NG1

# AIC and BIC Statistics
AIC (mulmodell)
BIC (mulmodell)

# Multiple-predictor multinomial logistic regression model with vglm() in VGAM

mulmodel2 <- vglm(healthre ~ educ + maritals + female + wrkfull, multinomial (reflevel = 1),
data=chp7.mul)

summary (mulmodel2)

coef (mulmodel2, matrix = TRUE)

confint (mulmodel2, matrix = TRUE)

exp (coef (mulmodel2, matrix = TRUE))

exp (confint (mulmodel2, matrix = TRUE))

cbind (exp (coef (mulmodel2)), exp (confint (mulmodel2)))

# Testing the overall model using the likelihood ratio test
lrtest (mulmodel0, mulmodel2)

# Pseudo R2 with nagelkerke ()
nagelkerke (mulmodel2)

# Pseudo R2 with equations

LLM2 <- logLik (mulmodel2)
McFadden2 <~ 1- (LLM2/LLO)
McFadden2

CS2 <- 1-exp (2* (LLO-LLM2) /1873)
Cs2

NG2 <- CS2/ (1-exp (2*LL0/1873))
NG2

# AIC and BIC Statistics
AIC (mulmodel2)
BIC (mulmodel2)
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# Model comparison with the likelihood ratio test
1rtest (mulmodell, mulmodel2)

# Predicted probabilities with ggpredict() in ggeffects

library (ggeffects)

pr.mul2m <- ggpredict (mulmodel2, terms="educ[12, 14, 16]", ci=NA)
pr.mul2m

plot(pr.mul2m)

pr.mul2 <- ggpredict (mulmodel2, terms=c("educ(12, 14, 16]", "maritals"), ci=NA)
pr.mul2
plot(pr.mul2)

# Presenting the results of the multinomial logistic Models using the texreg package

library (texreg)

screenreg (list (mulmodell, mulmodel2))

htmlreg (list (mulmodell, mulmodel2), file="chap7mul.doc", doctype=TRUE, html.tag=TRUE, head.tag=TRUE)

# Using multinom() in nnet a
library (nnet)

mulmodel2b <- multinom(healthre ~ educ + maritals + female + wrkfull, data=chp7.mul)
summary (mulmodel2b)

coef (mulmodel2b)

z <- summary (mulmodel2b) $coefficients/summary (mulmodel2b) $standard.errors

z

p <~ (1-pnorm(abs(z),0,1))*2

P

exp (coef (mulmodel2b))

exp (confint (mulmodel2b))

# Using mlogit() inmlogit

library (mlogit)

chp7 <- mlogit.data (chp7.mul, choice="healthre", shape="wide")

mulmodel2c <- mlogit (healthre ~ 1 | educ + maritals + female + wrkfull, reflevel =1, data=chp7)
summary (mulmodel2c)

coef (mulmodel2c)

confint (mulmodel2c)

exp (coef (mulmodel2c))

exp (confint (mulmodel2c))

cbind (exp (coef (mulmodel2c)), exp (confint (mulmodel2c)))

detach (chp7.mul)




Glossary

The multinomial distribution is an extension of the binomial distribution when the discrete random
variable is a nominal variable with more than two categories.

The multinomial logistic regression model is used to estimate nominal response variables with
multiple unordered categories. This model is a generalization of binary logistic regression when there
are more than two categories in a response variable.

The odds in the multinomial logistic model can be defined as the ratio of the probability of being in a
particular category to the probability of being in the base category.

Exercises

Use the GSS 2016 data available at https://edge.sagepub.com/liute for the following problems.

1. Conduct an analysis for a multinomial logistic regression model and estimate the ordinal response
variable happy from the four predictor variables, sex, educ, and satfin. Choose category 3 [i.e.,
not too happy] as the referent category.

Interpret the likelihood ratio test for the overall model.

In the regression table, identify the logit coefficients for the predictor variable satfin across two
binary comparisons. Are they both statistically significant? What categories are they comparing?

Compute the odds ratios for the predictor variable satfin across two binary comparisons.
Interpret the relative risk ratios/odd ratios of satfin.

Based on the parameter estimates in the output, write the two equations for the model.
Make a publication-quality table containing the estimated logit.

- Write a report to summarize the results from the output.
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POISSON REGRESSION MODELS

OBJECTIVES OF JHiS CEAF FEle

This chapter introduces Poisson regression models. It first starts with an introduction to
the Poisson regression model followed by a discussion of the incidence rates and incidence
rate ratios in the model, goodness-of-fit statistics, and how to interpret parameter
estimates. After a description of the research example, the data, and the sample, a one-
predictor Poisson regression model and a multiple-predictor Poisson regression model are
illustrated with the g1m () function in R. The vglm () function in the VGAM package is
also used to fit the multiple-predictor model. R commands and output are explained in
detail. This chaprer focuses on fitting the Poisson regression models with R, as well as on
interpreting and presenting the results. After reading this chapter, you should be able to:

o Identify when Poisson regression models are used.

* Fit a Poisson regression model using R.

¢ Interpret the output.

® Interpret the incidence rate ratios and marginal effects.
¢ Compute, plot, and interpret the prcdictcd counts.

® Compare models using the likelihood ratio test.

® Present results in publication-quality tables using R.

® Write the results for publication.
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