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PROPORTIONAL ODDS MODELS
FOR ORDINAL RESPONSE
VARIABLES

OBIECTIVES OF THIS CHAPTER

This chapter introduces proportional odds models for ordinal response variables. It starts
with an introduction to the model followed by a discussion of the odds and odds ratios in
the model, goodness-of-fit statistics of the model, the proportional odds assumption, and
how to interpret parameter estimates. After a description of the data, the proportional
odds models with the clm() function in the ordinal package and the vglm ()
function in VGAM are illustrated with step-by-step instructions. R commands and output
are explained in detail. The chapter focuses on fitting proportional odds models using R,
as well as on interpreting and presenting the results. After reading this chapter, you should
be able to:

e Identify when a proportional model is used.

e Conduct proportional odds models, and test the assumption using R.
e Interpret the output.

e Interpret the model in terms of odds ratios.

e Compute and plot the predicted probabilities.

e Compare models using the likelihood ratio test and other fit statistics.
e Present results in publication-quality tables using R.

e Write the results for publication.
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4.1 PROPORTIONAL ODDS MODELS:
AN INTRODUCTION

In the last chapter, we focused on binary logistic regression models when the outcome
variable is dichotomous with values of 1 and 0. In your research, you may often
encounter ordinal outcome variables, which are categorical variables with ranks or
orders, for example, student’s socioeconomic status ordered from low to high; chil-
dren’s proficiency in early reading scored from level 0-5; and a response scale of a
survey instrument with five levels, ordered from strongly disagree to strongly agree.

Research examples for ordinal response variables in the literature include a three-level
response scale for an item related to astrology in the 2006 General Social Survey
(Agresti, 2010), the deprivation level with three categories (not deprived, mildly
deprived, or severely deprived) (Borooah, 2002), student persistence through high
school with three levels (i.e., dropped out, still in school but behind peers, and per-
sisted) (Heck et al., 2012), four-category drug user type (Menard, 2010), children’s
literacy proficiency level (O’Connell, 2006), and four-category level of severity of illness
(Rabe-Hesketh & Skrondal, 2012).

In the preceding examples, the outcome variables of interest are ordinal response
variables with more than two categories. In this chapter and the following two
chapters, we will focus on various logistic regression models for ordinal response
variables, which are referred to as ordinal logistic regression models when they are
broadly defined. The first model, which is introduced in this chapter, is the pro-
portional odds (PO) model. The PO model, which is also called the cumulative odds
model, is one of the most commonly used models for the analysis of ordinal response
data. It is so popular that sometimes we just call it the ordinal regression model
or the ordered logit model. The PO model is a generalization of a binary logistic
regression model when the response variable has more than two ordinal categories. It
is used to estimate the odds of being at or below a particular level of the response
variable. For example, if there are / levels of ordinal outcomes, then the model makes
J — 1 predictions, each estimating the odds of being at or below the jth level of the
outcome variable, which are referred to as the cumulative odds. The odd ratios for
each predictor variable are assumed to be the same across all categories, which is
referred to as the PO assumption, or the parallel lines assumption. This model can
also estimate the odds of being above a particular level of the ordinal response
variable as well, because below and above a particular category are just two opposite
directions.

The PO model can be expressed in the logit form as follows:

logit[m;(x)] = In <1~—_%) = o+ (B X1 =B X2 — ... — B Xp) (4.1)
j

where wi(x) = P(Y < j | x1, %2505 Xp), which is the probability of being at or below
category j given a set of predictors. j = 1, 2, ..., / — 1. @, are the cut points, and S,
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B3, ...s Bp are the logit coefficients. To estimate the In(odds) of being at or below the
j-th category, the PO model can be rewritten as:

(P(Y < Jlxs xz,...,xp))
P(Y>j|x1, xz,...,xp)
= aj+ (—B1X1— BoX2 — ... — B Xp)

logit [P(Y < jl1, %2,y %)] = 4.2)

To understand the PO model for an ordinal response variable, we can think of it as
several binary logistic regression models that are estimated simultaneously. The
outcome variables of these binary models are dichotomized from the ordinal outcome
variable comparing outcomes at or below a category (Y < cat. ;) and above that category
(Y > cat. j). Therefore, each binary logistic regression estimates odds of being at or
below a category (coded as 1) versus above that category (coded as 0). Although each
logistic model has a different intercept, the estimated logit coefficients are constrained
to be equal. In other words, the regression lines are parallel, or the odds are proportional
across the categories. Therefore, for each predictor variable, we only need to estimate
one regression coefficient rather than multiple coefficients. This constraint is the
proportional odds assumption or the parallel lines assumption.

The clm() function from the ordinal package (Christensen, 2019) in R uses
Equation 4.2 to express the PO model where there are negative signs before the logit
coeflicients in the linear predictor, whereas the vglm () function in the VGAM package
(Yee, 2010) uses a different parameterization with positive signs before the logit
coefficients.

Although this chapter focuses on the commonly used logit link function for ordinal
logistic regression models, the probit link can be used to fit ordinal probit models,
where the cumulative probability of being at or below a particular category can be
expressed as the cumulative standard normal distribution function. See Chapter 3 on
the discussion of the probit model. For more information on ordinal regression models,
refer to Agresti (2010, 2013, 2015, 2019), Ananth and Kleinbaum (1997), Armstrong
and Sloan (1989), Clogg and Shihadeh (1994), Liu (2009, 2016a, 2016b), Liu et al.
(2018), Fullerton and Xu (2016), Long (1997), Long and Freese (2014), McCullagh
(1980), McCullagh and Nelder (1989), Menard (2010), O’Connell (2000, 2006),
Powers and Xie (2008), Smithson and Merkle (2014), and Tutz (2012).

4.1.1 0dds and Odds Ratios in PO Models

In binary logistic regression, the values of the outcome variable are either 1 or 0, and we
model the odds of success or of having an event when the outcome variable takes the
value of 1 (Y'= 1). The odds of success are the probability of success (») divided by the
probability of failure (1 — p).

In proportional odds models, the outcome variable is ordered with multiple levels, and
we estimate the odds of being at or below a particular category (¥ < /). Similar to the
odds in binary logistic regression, the odds of being at or below a category in ordinal
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logistic regression equals the probability of being at or below a category divided by the
probability of being above that category:

Py <)
dds(Y < j) = ————==

WA S )

where P(Y < j) is the cumulative probability of being at or below a category j or the

cumulative probability of the ordinal response variable Y less than or equal to a

category j. Since the probability of being at or below a category and the probability of

being above that category is complementary, (Y < j) + P(Y > j) = 1, this equation

can be rewritten as:

: PV

< = —=

Odds(Y < j) T—P(Y <)

It reads as follows: The odds of being at or below a category j in ordinal logistic
regression equal the probability of being at or below a category divided by its com-
plimentary probability, 1 minus the probability of being at or below that category.

The probability of being at or below a category P(Y < j) is the cumulative probability
since it equals the sum of the probabilities of all categories at or below that category:

PY<j)=PY =1)+P(Y =2)+...+P(Y =) Whenj = 1,2, ..., ]

For example, an outcome variable, health status, is ordinal with four levels from 1 to 4,
where 1 = poor, 2 = fair, 3 = good, and 4 = excellent:

P(Y <4 =PY =10)+PY =2)+P(Y =3)+P(Y = 4) =1
P(Y <3)=P(Y = 1)+ P(Y = 2)+ P(Y = 3)
PY§2=PY=1+PY=2

PY<1)=PY =1

The probability of being at a category P(Y = j) is equal to the difference between the
cumulative probability A(Y < j) and the cumulative probability XY < j — 1). It is
written as: (Y = j) = (Y < j) — (Y <j — 1). Therefore, the probability of being at
each category in the above example can be computed as follows:

P(Y=4) =PY <4)—-PY <3
P(Y =3) =P(Y <3)—P(Y <2
PlY =2)=PY <£2)-PY <1
PY =1)=PY L1

Since this outcome variable has four categories, we can estimate the following cumu-
lative odds: the odds of being at or below category 1, the odds of being at or below
category 2, and the odds of being at or below category 3. The odds of being at or below
a category in ordinal logistic regression are also called the cumulative odds.
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Odds (Y < 1) equal the ratio of probability of being at or below category 1 to the
probability of being above this category. The probability, Y > 1) = (Y = 2) +
P(Y = 3) + P(Y = 4), which is the sum of the probabilities when Y= 2, 3, and 4. We
define (Y = j) to be P(j), so the equation can be written as:

PY<) _ AT = 1)
Odds(Y < 1) = o < S " BT =+ (Y = 3) + B(¥ = %)
P(1)

~ P(2) + P(3) + P(4)

Odds (Y < 2) equal the ratio of probability of being at or below category 2 to the
probability of being above this category. Since 2(Y' < 2) = (1) + P(2), and P(Y > 2)
= P(3) + P(4), the odds of being at or below category 2, can be expressed as follows:

P(Y <2) _ PQ1)+P_2)
1-P(Y <2) P(3)+P(4)

Odds(Y < 2) =

Odds (Y < 3) equal the ratio of probability of being at or below category 3 to the
probability of being above this category. Using the same method, we get the following
equation:

P(1) + P(2) + P(3)

Odds(Y < 3) = @)

The odds of being at or below category 1 are the probability comparisons between
category 1 and categories 2, 3, and 4; the odds of being at or below category 2 compare
the probabilities of categories 1 and 2 with the probabilities of categories 3 and 4; and
the odds of being at or below category 3 compare the probabilities of categories 1, 2,
and 3 with the probability of category 4. Therefore, the cumulative odds in ordinal
logistic regression are basically comparisons between two complimentary probabilities
lie, XY < j) and XY > j)]. Table 4.1 presents the logits, odds, and category com-
parisons for the PO model for the health status with four levels.

TABLE 41 @ Category Comparisons for the Proportional Odds Model With

Four Levels of Health Status (j = 1, 2, 3, 4)

Logit PlY < j) m Probability Comparisons

Level 1 logit PlY < 1) ;g_i_% Category 1 vs. categories 2-4
{Leve"l oy logit PlY <2) 1;(_{;%% -1 Categoraes Iand2vs céfeg’briésfé and 4 .
Level 3 logit PlY < 3) Br<3) Categories 1, 2, and 3 vs. category 4

P(Y>3)
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Odds Ratios in PO Models

In binary logistic regression, the odds ratio is the ratio of two odds, the odds of success
when the value of a predictor is (x + 1) relative to the odds when the predictor has a
value of x. In other words, it is the change in the odds for a one-unit increase in the
predictor variable. Similar to binary logistic regression, the odds ratio in PO models is
the change in the odds (i.e., the odds of being above a particular category versus being
at or below that category) for a one-unit increase from any value of x to the value of
(x + 1), and it is the exponentiated logit coefficient, exp(B). In contrast, the odds ratio
of being at or below a particular category is the multiplicative inverse or reciprocal of
the odds of being above that category. It is the exponentiated logit coefficient with a
negative sign before that [i.e., exp(-B)].

4.1.2 The PO Assumption
PO Assumption

In the proportional odds models, we assume that each predictor has the same effects
across the categories of the ordinal outcome variable. In other words, the logit
regression coefficients for each predictor are the same across the ordinal categories. For
example, if we predict the ordinal outcome variable, health status, from the predictor,
marital status, we estimate the odds of being at or below a category of health status
relative to above that category, given that predictor variable. The estimated logits and
the corresponding odds ratios of being at or below category 1, category 2, and category
3 for the predictor, marital status, are assumed to be the same. Although we assume that
they are equal, how can we know whether the assumption holds?

Likelihood Ratio Test

To test whether the PO assumption is met, we can use the likelihood ratio test to look
at the logit coefficients of a series of underlying binary logistic regression models for the
dichotomized ordinal outcome variable, comparing outcomes at or below a category
versus above that category.

The likelihood ratio test of the PO assumption can be examined using the nomi -
nal_test () function in the ordinal package. It provides the likelihood ratio test
result for each predictor. We can also use the 1rtest () function in the VGAM
package to test the PO assumption, which provides the omnibus test for the overall
model.

4.1.3 Goodness-of-Fit Statistics

Since ordinal logistic regression is an extension of binary logistic regression, all
measures-of-fit statistics in binary logistic regression models, such as pseudo R? sta-
tistics, the deviance, the likelihood ratio test, and Akaike’s information criterion

(AIC) and Bayesian information criterion (BIC), can also be applied to proportional
odds models.
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4.1.4 Interpretation of Model Parameter Estimates

The odds ratio in ordinal logistic regression can be interpreted in a similar way as that
of the binary logistic regression. In the binary logistic regression, we estimate the odds
of success when the outcome takes the value of 1 (i.e., Y = 1), whereas in ordinal
logistic regression, the odds are the ones when the outcomes are at or below a particular
category (i.e., ¥ < 7).

Recall that the signs before the logit coefficients in the equation of the ordinal logistic
regression (Equation 4.1) are negative. To get the odds ratio (OR) of being at or below
a category, we need to exponentiate the logit coefficient with a negative sign before that.
This odds ratio can be interpreted as the change in the predicted logit or the log odds of
being at or below a particular category for a one-unit increase in the predictor variable.
By removing the negative sign and then exponentiating the logit coefficient, we get the
OR of being above a category. In contrast, taking the multiplicative inverse of the odds
of being at or below a particular category also gives us the odds of being above that
category. The odds ratio of being a particular category can be interpreted as the change
in the predicted logit or the log odds of being above that particular category for a one-
unit increase in the predictor variable.

When the logit coefficient itself is positive, it indicates the relationship between the
predictor variable and the logit function of the probability is positive. In other words, a
positive coefficient increases the probability of being above a category. By exponenti-
ating the logit coefficient, you get the OR, which is greater than 1. This means that the
odds of being above a particular category increases for a one-unit increase in the pre-
dictor variable.

When the logit coefficient itself is negative, it indicates that the relationship between
the predictor variable and the logit function is negative. A negative coefficient decreases
the probability of being above a category. The exponentiated coefficient, the OR, is less
than 1. This means that the odds of being above a particular category decreases for a
one-unit increase in the predictor variable.

When the logit coefficient equals 0, the OR equals 1. This indicates that there is no
relationship between the predictor and the odds, so there is no change in the odds when
the values of the predictor variable change.

4.2 RESEARCH EXAMPLE AND DESCRIPTION
OF THE DATA AND SAMPLE

Research Problem and Questions: In this chapter, the purpose of the research example is
to investigate the relationships between the ordinal response variable, health status, and
the three predictor variables: marital status, the highest education completed, and
gender. The research question is as follows: Do the three predictor variables predict the
ordinal response variable, health status? Specifically, do the three predictor variables
predict the cumulative odds and then the cumulative probabilities of being at or below
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a particular level of health status, or the cumulative odds and then the cumulative
probabilities of being above that health status level?

Description of the Data and Sample: The data for the following analyses were from the
General Social Survey 2016 (GSS 2016). The following are the variables used for data

analysis in this chapter:

e healthre: the recoded variable of health (health status) with four
ordinal categories (1 = poor health, 2 = fair health, 3 = good health, and
= excellent health)

e maritals: the recoded variable of marital (marital status) with
1 = currently married and 0 = not currently married

e educ: the highest education completed

e female: recoded variable of sex with 1 = female and 0 = male

4.3 FITTING A ONE-PREDICTOR PO MODEL
USING THE c1m () FUNCTION

4.3.1 Packages and Functions for Proportional
Odds Models in R

Several packages in R can be used for fitting PO models. This chapter focuses on the
ordinal package (Christensen, 2019) and the VGAM package (Yee, 2010, 2015,
2021). The clm() function in ordinal and the vglm() function in VGAM are
both used. The c1m () function is introduced first.

4.3.2 The c1lm() Function in the Ordinal Package

The clm() function in the ordinal package is used for the ordinal logistic
regression analysis, where c1m stands for the cumulative link model with the logit link
as the default. Since ordinal is a user-written package, you need to install it first by
typing install.packages (“ordinal”) and then load the package by typing
library (ordinal). The basic syntax is c1m () with the model formula which is
specified within the parentheses after the function name clm. Writing the model
formula for ordinal logistic regression in clm () is similar to that for the linear
regression in 1m (). The ordinal response variable and the independent variable(s) in
the model are separated by the tilde (~). For example, the command clm(y ~ x)
tells R to run a simple ordinal logistic regression analysis predicting the ordinal
dependent variable y with an independent variable x. When there are more than
multiple predictor variables in the formula, they are connected by plus (+) signs. For
example, the model formula in c1m (y ~ x1 + x2) includes two predictor variables,
xI and x2. The default link function is the logit function, which can be omitted. To fit
an ordinal probit model, we can use the 1ink = “probit” argument. For more
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details on how to use this command, type help (c1m) in the command prompt after
loading the ordinal package.

4.3.3 The PO Model: One-Predictor Model With the c1lm()
Function

The command PO.1 <- clm(healthre ~ educ, data = chp4.po) tells R
to conduct the ordinal logistic regression to estimate the ordinal outcome variable
healthre using the predictor variable educ with the clm() function. In the
function, the outcome variable healthre is estimated by the predictor variable
educ with a tilde (~). The data = chp4.po argument specifies the data frame.
The output of the ficted model is defined as an object named PO.1. The sum-
mary (PO.1) command prints out the output, which is displayed as follows.

library(foreign)

chp4.po <- read.dta ("C:/CDA/gss2016.dta")

chp4.po$healthre <- factor (chp4.po$healthre, ordered=TRUE)
chp4.po$educ <- as.numeric (chp4.po$educ)

chp4.po$wrkfull <- as.numeric (chp4.po$wrkfull)
chp4.po$maritals <- as.numeric (chp4.po$maritals)

; > attach (chp4.po)

VVVVYVYV

> # One-predictor model with the clm() function in ordinal
i > library(ordinal)
i > P0O.1 <- clm(healthre ~ educ, data = chp4.po)
> summary (PO.1)
formula: healthre ~ educ

data: chp4.po
link threshold nobs logLik AIC niter max.grad cond.H
logit flexible 1873 -2166.16 4340.32 5(0) 5.85e-08 1.4e+04
Coefficients:
i Estimate Std. Error z value Pr(>|zl|)
| educ 0.1790 0.0152 11.78 <2e-16 ***

Signif. codes: 0 “***7 0,001 “**’ 0,01 ‘*’ 0.05 ‘.’ 0.1 ‘' 1

Threshold coefficients:

Estimate Std. Error z value i
112 -0.3554 0.2162 -1.644
213 1.5258 0.2092 7.294
314 3.8056 0.2262 16.823

4.3.4 Interpreting R Output

The output at the beginning displays the model formula and the data. It then shows the
link function, threshold type, number of observations, log likelihood, AIC statistic,
number of Newton-Raphson iterations, maximum absolute gradient of the log-likeli-
hood function, and condition number of the Hessian in sequence.
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The link function of the PO model is logit. The estimated thresholds or intercepts are
unconstrained. The number of observations for the analysis is 1,873. The maximum
log likelihood value is —2,166.16, and the AIC statistic is 4,340.32.

The next part shows the coefficients table (labeled Coefficients:). It includes the
parameter estimates for the predictor variables, their standard errors, the Wald z sta-
tistics, and the associated p values. The null hypothesis for the Wald test is that
the coefficient of the predictor variable is 0, and the alternative hypothesis is that the
coefficient of the predictor variable is significantly different from 0. The logit regression
coefficient of the predictor variable educ B = .179 and its Wald z = 11.78. The
associated p value Pr (>]z|) < .001, so we rejected the null hypothesis. Therefore,
the predictor variable educ is a significant predictor of the ordinal outcome variable,
health status.

The final part of the output displays the intercepts or the threshold coefficients table
(labeled Threshold Coefficients:). It includes the parameter estimates for the
intercepts or the thresholds, their standard errors, and the Wald z values.

4.3.5 Interpreting the Coefficients and the
Intercepts/Thresholds

The logit coefficients can also be obtained using coef (PO.1) and their confident
intervals can be obtained with confint (PO.1).

> coef (PO.1)

112 213 314 educ
-0.3553797 1.5258035 3.8055757 0.1790195

> confint (P0O.1)

2.5 % 97.5 %
educ 0.1493574 0.2089509

B =.179. It can be interpreted as follows: for a one-unit increase in the years of
education completed, the change in the logit or log odds of being above a category of
health status (i.e., better health status) is .179. The 95% confidence interval of the
regression coefficient is [.149, .209]. It does not contain 0, which indicates the
coeficient is significantly different from 0.

The threshold coefficients table reports the three intercepts or thresholds: 112, 23,
and 3| 4. These are the estimated thresholds on the latent variable Y* used to differ-
entiate the adjacent levels of health status. When the response category is 1, the latent
variable falls at or below the first cut point a;. When the response category is 2, the
latent variable falls between the first cut point a; and the second cut point a; when
the response category reaches 3, the latent variable falls between the second «; and the
third cut point a3; and when the response category reaches 4, the latent variable is at or
above the third cut point a3. These thresholds are also called intercepts or cut points.
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They can be thought of as the intercepts for three underlying binary logistic regression
models if we dichotomize the ordinal outcome variable.

4.3.6 0dds Ratios

We use the exp(coef (PO.1)) command to get the odds ratios and the
exp (confint (PO.1) ) command to produce the corresponding confidence inter-
vals. The output is shown as follows.

> exp (coef (PO.1))

112 2|3 314 educ
0.7009073 4.5988372 44.9511225 1.1960440
> exp (confint (PO.1))

2.5% 97.5 %
educ 1.161088 1.232384

The odds ratio for the predictor variable educ is 1.196. It equals the exponentiated
regression coefficient exp(.179). The 95% confidence interval of the odds ratio is
[1.161, 1.232].

4.3.7 Interpreting the Odds Ratio of Being at or Below
a Particular Category

The estimated logit regression coefficient B = .533, z = 5.11, p < .001, which
indicates that education is a significant predictor of the ordinal response variable, health
status. By substituting the value of the coefficient into Equation 4.2, logit [AY < j |
educ)] = a; + (—=B:X)), we calculated logit [X(Y' < j | educ)] = a; — .179 (educ).
OR = e™179 = 836, which indicates that for a one-unit increase in the years of
education the odds of being at or below any category of health status (i.e., less healthy)
decrease by .836.

To estimate the cumulative odds being at or below a certain category j for educ, let us
take a look at the logit form of proportional odds model, logit [A(Y < j | educ)] = a;
-.179 (educ). For example, when Y < 1, a;, —.355 is the first cut point for the
model. By substituting it into Equation 4.2, we get logit [A(Y < j | educ)] = —.355
—.179(educ). For educ (x = 1), logit [A(Y' < 1 | educ)] = —.534. By exponen-
tiating the logit, we calculate the odds of being at or below the category 1 (poor health)
when educ = 1, ¢339 = .586. For educ (x = 2), logit [(Y < 1 | educ)] =
—.355 —.179X 2 = —.713, so the odds of being at or below the category 1 (poor
health) when educ = 2, e™713 =.490. The odds ratio of educ (x = 2) relative to
educ (x = 1) = .490/.586 = .836.
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4.3.8 Interpreting the Odds Ratio of Being Above
a Particular Category

The proportional odds model can also estimate the In(odds) of being above a category ;.
Again, these In(odds) can be transformed into the cumulative odds and cumulative
probabilities. For example, we can estimate the cumulative probability of health status
above category 3, P(Y > 3); above category 2, (Y > 2); and above category 1, X(Y > 1).
The cumulative logit form can be expressed as logit [AY > j | educ)] = —a; + (B1X).
When estimating the odds of being above category j, the sign of the cut points needs to be
reversed and their magnitude remains unchanged since we estimate the cut points from the
right to the left of the latent variable Y*, that is, from the direction when ¥ = 4 approaches
Y = 1. Therefore, three cut points from right to left turn to —3.806, —1.526, and .355.

When the predictor is dichotomous, a positive sign of the logit coefficient indicates that it is
more likely for the group (x = 1) to be above a particular category than for the relative group
(v = 0). When the predictor is continuous, a positive coefficient indicates that when the
value of the predictor variable increases, the odds of being above a particular category increase.

The exp (coef (PO.1)) command provides the odds ratios of being above a particular
category: OR = 1.196. It can be interpreted that the odds of being above a particular
category of health status (better health status) increase by a factor of 1.196 for each unit
increase in years of education. In other words, the odds of being above a particular category
of health status increase by 19.6% for each unit increase in education.

4.3.9 Model Fit Statistics
Testing the Overall Model Using the Likelihood Ratio Test

To test if the overall model is significant, we fit a null model with the intercept only
and compare the one-predictor PO model with the null model using the anova ()
function. The command PO.0 <- clm(healthre ~ 1, data = chp4.po) is
used to fit the null model. The output is displayed below by the summary (PO.0)
command.

| > # Null model with the intercept only

> P0.0 <- clm(healthre ~ 1, data = chp4.po)
| > summary (PO.0)

formula: healthre ~ 1

data: chp4.po
link threshold nobs logLik AIC niter max.grad cond.H |
logit flexible 1873 -2238.22 4482.44 5(0) 4.56e-09 5.9e+00 |

i

Threshold coefficients:

Estimate Std. Error z value
112 -2.69954 0.09510 -28.39
213 -0.89064 0.05087 -17.51

314 1.25964 0.05569 22.62 §
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The anova (PO.0, PO.1) command compares the log-likelihood statistics of the
fitted model PO. 1 and the null model PO. 0 using the likelihood ratio test.

{ > # Testing the overall model using the likelihood ratio test
> anova (P0.0, PO.1)
Likelihood ratio tests of cumulative link models:

formula: link: threshold:
PO.0 healthre ~ 1 logit flexible
PO.1 healthre ~ educ logit flexible

i no.par AIC logLik LR.stat df Pr(>Chisq)
| PO.0 3 4482.4 -2238.2
i PO.1 4 4340.3 -2166.2 144.11 1 < '2.2e-16 ***

Signif. codes: (O ‘¥**7i0.001. **7:0,01; “** 0,05 %*:0.1:N 4],

The null hypothesis of the test for the overall model is that the predictor variable does
not contribute to the model, and the alternative hypothesis is that the one-predictor PO
model is better than the null model with no independent variables. The likelihood ratio
test statistic LR X%l g = 144.11, p < .001, which indicated that the overall model with
one predictor was significantly different from zero. Therefore, the one-predictor PO
model provides a better fit than the null model with no independent variables.

Pseudo R?

The nagelkerke (PO.1) function in the rcompanion package (Mangiafico,
2021) produces the three types of pseudo R statistics and the likelihood ratio
test statistic for the PO model. You need to install rcompanion first by typing
install.packages (“rcompanion”) and then load it by typing
library (rcompanion).

> # Pseudo R2

> library(rcompanion)
> nagelkerke (PO.1)

$ Models”

Model: "clm, healthre ~ educ, chp4.po"
Null: "clm, healthre ~ 1, chp4.po"

$Pseudo.R.squared.for.model.vs.null |

Pseudo.R.squared
McFadden 0.0321935
Cox and Snell (ML) 0.0740563
Nagelkerke (Cragg and Uhler) 0.0815267
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S$Likelihood.ratio.test

| Df.diff LogLik.diff Chisqg p.value
i =L -72.056 144.11 3.358e-33

SNumber.of.observations

Model: 1873
Null: 1873
$Messages

[1] "Note: For models fit with REML, these statistics are based on refitting with ML"

> $Warnings
H [1] "None"

The McFadden R? is .032, the Cox and Snell R is .074, and the Nagelkerke R” is .082.
The same results can be computed using the equations introduced in the previous
section. In the R command below, LLM is the log-likelihood value for the single-
predictor model and LLO is the log-likelihood value for the null model. In addition,
McFadden is the object name for the McFadden R?, CS for the Cox and Snell A2, and
NG for the Nagelkerke R%.

> LLM <- logLik (PO.1)

> LLO <- logLik (PO.0)

> McFadden <- 1-(LLM/LLO)

’log Lik.” 0.03219349 (df=4)

> CS <- l-exp(2* (LLO-LLM) /1873)
>Cs

"log Lik.’ 0.07405631 (df=3)

> NG <- CS/ (1l-exp (2*LL0/1873))
> NG

’log Lik.’ 0.08152671 (df=3)

4.3.10 Using the Likelihood Ratio Test to Test the PO
Assumption

The nominal_test () function in the ordinal package is used to test the PO
assumption. It provides the likelihood ratio test result for each predictor. A nonsig-
nificant test indicates that the proportional odds assumption is not violated for

that predictor. The results of the nominal_test (PO.1) function are shown as
follows.

> # PO assumption test
> nominal_test (PO.1)
Tests of nominal effects
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formula: healthre ~ educ

Df logLik AIC LRT Pr (>Chi)
<none> -2166.2 4340.3
educ 2 -2165.8 4343.5 0.82398 0.6623

The likelihood ratio test yields X(zz) = .824, p = .662, which indicates that the pro-
portional odds assumptions for the model is upheld, suggesting that the effect of the
explanatory variable educ is constant across the underlying binary models.

4.4 FITTING A MULTIPLE-PREDICTOR PO
MODEL USING THE c1m () FUNCTION

4.4.1 The PO Model: Multiple-Predictor Model With
the clm() Function

The command PO.2 <- clm(healthre ~ maritals + educ + female,
data = chp4.po) tells R to predict the ordinal response variable heal thre from
the three predictor variables maritals, educ, and female using ordinal logistic
regression. The predictor variables are connected by plus signs in the model formula.
The output is shown as follows after typing the summary (PO.2) command.

e ————————————— e R

> # Multiple-predictor model with the clm() function S
> P0O.2 <- clm(healthre ~ maritals + educ + female, data = chp4.po) i
> summary (PO.2) ;
formula: healthre ~ maritals + educ + female

) data: chp4.po
| |
|
link threshold nobs logLik AIC niter max.grad cond.H §
logit flexible 1873 -2160.51 4333.01 5(0) 7.25e-08 1.5e+04
: Coefficients: ‘
| Estimate Std. Error z value Pr(>lzl)
t maritals 0.29157 0.08819 3.306 0.000946 ***
educ 0.17502 0.01523 11.490 < 2e-16 **x* |
female 0.06702 0.08760 0.765 0.444232 i

Signif. codes: 0 ‘***’/ 0,001 ‘**’/ 0.01 ‘*’ 0.05 ‘. 0.1 ‘' 1

Threshold coefficients:

Estimate Std. Error z value
112 -0.2543 0.2222 -1.145
213 1.6344 0.2158 7.574

314 3.9243 0.2331 16.834
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4.4.2 Interpreting R Output

The R output for the multiple-predictor PO model includes the model formula and the
data. It then displays the link function, the threshold option, the number of obser-
vations, the log likelihood value, AIC, the number of Newton-Raphson iterations, the
maximum absolute gradient of the log-likelihood function, and the condition number
of the Hessian. The fourth and fifth parts show the coefficients table and the threshold
coeflicients table, respectively.

The number of observations for the analysis is 1,873. The maximum log likelihood
value is —2,160.51, and the AIC statistic is 4,333.01.

The coefficients table (labeled Coefficients:) displays the parameter estimates for
the three predictor variables, their standard errors, the Wald z statistics, and the
associated p values.

For the predictor variable maritals, Wald z = 3.306. The associated p value,
Pr(>|z|) < .001, so we rejected the null hypothesis.

For the predictor variable educ, the Wald z = 11.490. The associated p value,
Pr(>|z|) < .001, so we also reject the null hypothesis. Therefore, maritals
and educ are significant predictors of the outcome variable.

For the predictor variable female, the Wald z = .765. The associated p value
Pr(>|z|) = .444, so we fail to reject the null hypothesis and conclude that there is
no significant effect of being female on the outcome variable.

The threshold coefficients table (labeled Threshold Coefficients:) includes the
parameter estimates for the intercepts or the thresholds, their standard errors, and the

Wald z values.

4.4.3 Interpreting the Coefficients and the Intercepts/
Thresholds

The logit coefficients can also be obtained using the coef (PO.2) command and
their confident intervals can be obtained with confint (PO.2).

]

> coef (PO.2)

112 213 314 maritals educ female |
-0.25430764  1.63443046  3.92426852  0.29157322  0.17502373 0.06701637

? > confint (P0O.2)

2.5% 97.5 %
maritals 0.1189005 0.4646685
educ 0.1452924 0.2050181

female -0.1046664 0.2387539
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The logit coefficient for maritals B = .292. This means that the logit or log odds of
being above a category of health status for the married is .292 points higher than that
for the unmarried.

The logit coefficient for educ B = .175. This can be interpreted as the increase in the
logit or log odds of being above a category of health status (i.e., better health status) is
.179 for a one-unit increase in the years of education.

The logit coefficient for female B = .067. Since it is not significant (p = .444),
being a female does not impact the logit or log odds of being above a category of health
status.

The threshold coefficients table reports the three thresholds: 112, 2|3, and 3] 4.
These are the estimated thresholds or intercepts to differentiate the adjacent categories
of health status. The first intercept a; is —.254; the second intercept a, is 1.634; and
the third intercept a3 is 3.924.

4.4.4 Interpreting the Odds Ratios of Being Above a Particular
Category

The exp (coef (PO.2)) command provides the odds ratios of being above a
category and the exp (confint (PO.2)) command produces the corresponding
confidence intervals. The following output is displayed.

> exp (coef (PO.2))

112 2|3 314 maritals educ female
0.7754532 5.1265374 50.6160401 1.3385316 1.1912745 1.0693130

> exp (confint (PO.2))

2.5% 97.5%
maritals 1.1262579 1.591487
educ 1.1563777 1.227547
female 0.9006249 1.269666

For maritals, B = .292, which is positive; OR = 1.339, which is greater than 1.
This indicates that the odds of being above a particular category of health status (better
health status) for the married are 1.339 times the odds for the unmarried when holding
all the other predictors constant.

For educ, B = .175, which is positive; OR = 1.191, which is greater than 1. This
indicates that the odds of being above a particular category of health status (better
health status) increase by a factor of 1.191 for a one-unit increase in the predictor,
education, when holding all the other predictors constant. In other words, for a one-
unit increase in education, the odds of being healthier increase by 19.1%.

For female, B = .067, p = .444, which is not significantly different from 0; OR =
1.069, which almost equals 1. This indicates that there is no relationship between being
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a female and the cumulative odds of being in better health status. In other words, there
is no significant difference between the males and females in better health status.

4.4.5 Interpreting the Odds Ratios of Being at or Below a
Particular Category

In the preceding section, we interpreted the odds ratio of being above a category. We
can also interpret how these predictor variables contribute to the odds of being at or
below a particular category if we reverse the sign before the estimated logit coefficients
and then compute the corresponding odds ratios.

The exp (-coef (PO.2) command tells R to reverse the odds of being above a
category versus being at or below that category to the odds of being at or below a
category versus above that category. The following is the output produced by the
command.

> exp (-coef (P0.2))

112 23 314 maritals educ female |
1.28956847 0.19506344 0.01975658 0.74708731 0.83943710 0.93517989 |

‘ > exp (-confint (PO.2))

| 2.5% 97.5 %
{ maritals 0.8878961 0.6283434
| educ 0.8647694  0.8146326
i female 1.1103402 0.7876087

By substituting the values of the four logit coefficients into Equation 4.2, we get logit
[AY<)] = a;+ (=292 X maritals —.175 X educ —.067 X female). The
exponentiated logit coefficients are the odds ratios of being at or below a particular
category.

For the predictor maritals, OR = .747, which is less than 1. This indicates that the
odds of being at or below a particular category of health status (worse health status) for
the married are .747 times the odds for the unmarried when holding all the other
predictors constant.

For the predictor educ, OR = .839, which is less than 1. This indicates that the odds
of being at or below a particular category of health status (poorer health status) decrease
by a factor of .839 for a one-unit increase in education when holding all the other
predictors constant.

For the predictor female, OR = .935 (p = .444), which is close to 1. This indicates
that there is no relationship between being a female and the cumulative odds of being
in poorer health status.
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4.4.6 Computing the Predicted Probabilities With the
ggpredict () Function in the ggeffects Package

Since the margins package (Leeper, 2021) has not been fully developed for the
ordinal regression models, introduction of the marginal effects is omitted. We use the
ggpredict () function in the ggeffects package (Liidecke, 2018b) compute
the predicted probabilities of being in a particular category of the ordinal response
variable at specified values of predictor variables. The command is as follows: mar-
gins.e <- ggpredict (P0.2, terms = "educ[12, 14, 16]"). In the
ggpredict () function, PO. 2 is the fitted model; and the terms = "educ[12,
14, 16]" option specifies the predictor variable educ at the values of 12, 14, and 16
when holding the other predictor variables at their means. The terms option can
specify up to four variables, including the second to fourth grouping variables. The
output is assigned to an object named margins.e. To request the standard errors of
the predicted probabilities, we can use either the as.data.frame () or the
sqrt (diag (vcov ())) function.

————————————— - 3

> # Predicted probabilities with ggpredict () in ggeffects
> library(ggeffects)

> margins.e <- ggpredict (PO.2, terms = "educ[12, 14, 16]")
> margins.e

# Predicted probabilities of healthre

# Response Level =1

educ |  Predicted | 95% CI |

12 | 0.07 I [0.06, 0.09] |

| 14 | 0.05 I [0.04, 0.07] |
| 16 | 0.04 I [0.03, 0.05]

educ | Predicted | 95% CI
12 0.27 | [0.25, 0.30] |
14 | 022 | [0.20, 0.24] |
16 | 0517 | [0.15, 0.49]

educ | Predicted | 95% CI
12 | 0.49 | [0.47, 0.52]
14 | 0.51 | [0.49, 0.54]

16 | 0.51 | [0.49, 0.54]
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# Response Level = 4

educ | Predicted | 95% CI
12 | 0.16 | [0.14, 0.18]
14 | 0.21 | [0.19;:0.23]
16 | 0.28 | [0.25, .31]

Adjusted for:
* maritals = 0.44
ki female = 0.56

> plot (margins.e)

The predicted probabilities for each response level are listed in sequence. For each
response level, the first column in the table of the output lists educ at the values of 12,
14, and 16. The remaining columns list the predicted probabilities and the lower and
upper confidence intervals. The predicted probabilities of being in poor health (i.e.,
response level = 1) are .07, .05, and .04, respectively. The predicted probabilities of
being in the other three categories are also listed in the output. The last section titled
“Adjusted for” lists the means of the other variables.

The predicted probabilities for all four response levels are plotted using the plot
(margins.e) command. Figure 4.1 shows the predicted probabilities of being in
each category (ie., Y =1, 2, 3, and 4) for educ at 12, 14, and 16.

The graph shows that with the increase in the years of education, the probabilities of
being in poor and fair health condition (categories 1 and 2) decrease. In other words,
people with higher levels of education are less likely to be associated with poor and fair
health conditions. In addition, with the increase in the years of education, the prob-
abilities of being in good and excellent health conditions (categories 3 and 4) increase.
In other words, people with a higher level of education are more likely to be in good
and excellent health conditions.

4.4.7 Model Fit Statistics
Testing the Overall Model Using the Likelihood Ratio Test

To test if the overall model is significant, we fit a null model with the intercept only
and compare it with the multiple-predictor PO model by using the anova ()
function. Since the null model is fitted in the previous section, the output is
omitted here. The anova (PO.0, PO.2) command compares the log-likelihood
statistics of the fitted model PO. 2 and the null model PO. 0 using the likelihood
ratio test.
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FIGURE 41 @ Predicted Probabilities of Being in Categories 1, 2, 3, and 4 for educ
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> # Testing the overall model using the likelihood ratio test

> anova (P0.0, P0O.2)
Likelihood ratio tests of cumulative link models:

formula: link: threshold:
PO.0 healthre ~ 1 logit flexible
PO.2 healthre ~ maritals + educ + female logit flexible
no.par AIC logLik LR.stat df Pr (>Chisq)
.0 3 4482.4 -2238.2
o2 6 4333.0 -2160.5 155.42 3 < 2.2e-16 ***

Signif. codes: 0 ‘***’/ 0,001 ‘**’ 0.01 ‘*’/ 0.05 ‘. 0.1 '’ 1
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The null hypothesis of the test for the overall model is that the predictor variables do
not contribute to the model, and the alternative hypothesis is that the multiple-pre-
dictor PO model is better than the null model with no independent variables. The

likelihood ratio test statistic LR X%3) = 155.42, p < .001, which indicated that the

overall model with the three predictors was significantly different from 0. Therefore,
the multiple-predictor PO model provides a better fit than the null model with no

independent variables.

Pseudo R?

The nagelkerke (PO.2) command produces the three types of pseudo R* statistics

and the likelihood ratio test statistic for the PO model.

> #PseudoR2
> nagelkerke (PO.2)
$ Models"

Model: "clm, healthre ~ maritals + educ + female, chp4.po"
Null: "clm, healthre ~ 1, chp4.po"

$Pseudo.R.squared. for.model.vs.null

Pseudo.R.squared

McFadden 0.0347206

Cox and Snell (ML) 0.0796320

Nagelkerke (Cragg and Uhler) 0.0876648

$Likelihood.ratio.test

Df.diff LogLik.diff Chisqg p.value
=8 =77.712 155.42 1.7801e-33

$Number.of.observations

Model: 1873
Null: 1873
$Messages

[1] "Note: For models fit with REML, these statistics are based on refitting with ML"

$Warnings
[1] "None"

McFadden’s R is .035, Cox and Snell’s R? is .080, and Nagelkerke’s R* is .088.
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4.4.8 Using the Likelihood Ratio Test to Test the PO Assumption

We use the nominal_ test () function in the ordinal package to test the PO
assumption. It provides the likelihood ratio test result for each predictor. A nonsig-
nificant test indicates that the proportional odds assumption is upheld for that pre-
dictor. The results of the nominal_test (PO.2) command are shown as follows.

> # PO assumption test
> nominal_test (P0O.2)
Tests of nominal effects

formula: healthre ~ maritals + educ + female

Df logLik AIC LRT Pr (>Chi)
<none> -2160.5 4333.0 |
maritals 2 -2156.3 4328.5 8.4986 0.01427 *
educ 2 -2160.1 4336.1 0.8962 0.63884 {
female 2 -2160.3 4336.6 0.3922 0.82194 |

Signif. codes: 0 ‘***’/ 0,001 ‘**’ 0,01 **’ 0.05 *." 0.1 "1

it

The proportional odds assumption is upheld for educ and female, whereas it is violated
formaritals. Formaritals, the likelihood ratio test x%z) = 8.499, p = .014, which
is significant.

4.4.9 Model Comparison Using the Likelihood Ratio Test

The likelihood ratio test or the deviance difference test is used to compare the full
model and the one-predictor model. Recall that this test compares the reduced model,
which contains less parameters, and the full model, which contains all parameters. The
difference in deviance is often expressed as G = Deviance for the reduced model —
Deviance for the full model or as Dgeguced — Druii- The difference in deviance between
nested models has a chi-square distribution with the degrees of freedom equal to the
difference in the number of parameters between these two models.

The anova () function is used for the likelihood ratio test or the deviance difference
test. Next, we compare the simple-predictor PO model and the multiple-predictor PO
model with the anova (PO.1, PO.2) command.

> # Model comparison using the likelihood ratio test

> anova (PO.1, P0O.2)
Likelihood ratio tests of cumulative link models:

formula: link: threshold:
PO.1 healthre ~ educ logit flexible i
PO.2 healthre ~ maritals + educ + female logit flexible |
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no.par AIC logLik LR.stat df Pr (>Chisq)
PO.1 4 4340.3 -2166.2
| Po.2 6 4333.0 -2160.5 11:313 2 0.003496 **
Signif:‘codes; 0 “Axx!7i0L001:d**2 0501, Y%7 0,05 Y,7 0.1 V71

The likelihood ratio chi-square test X7,y = 11.313, p < .001. This result indicates that
the full model has a better fit than the one-predictor model. The same result can be
obrtained if we compute it using the following equation:

G = Drufiioed 7ebWll = i7:2% [ —2166.2 = (—2160.5)]
=114,df =6—4 =2

4.5 FITTING A SINGLE-PREDICTOR PO
MODEL USING THE vglm () FUNCTION

4.5.1 The vglm() Function in the VvGAM Package

The vglm () function in the VGAM package can also be used for the ordinal logistic
regression analysis, where vglm stands for vector generalized linear models. You need
to install the VGAM package first by typing install.packages (“WGAM”) since
it is a user-written package. After installation, load the package by typing library
(VGAM) . The basic model formula command for vglm () is similar to that for either
introduced in this chapter or glm() introduced in Chapter 2. In addition to the
model formula, the family argument is needed for different types of models. For
example, the command vglm(y ~ x, family = cumulative (parallel =
TRUE) , data = datal) tells R to fit a simple cumulative odds model predicting
the ordinal dependent variable y with an independent variable x. The ordinal response
variable and the independent variable in the model are separated by the tilde (~). The
argument family = cumulative (parallel = TRUE) specifies the VGAM
family function. It tells R to fit a cumulative odds model with the proportional odds
assumption being specified. The data argument specifies the data frame used for
the analysis. For more details on how to use this command, type help (vglm),
help (propodds), and help (cumulative) in the command prompt after
loading the VGAM package.

4.5.2 Using the vglm () Function to Fit a Single-Predictor
PO Model
To fit the same single-predictor PO model introduced in the earlier section, we use the

command modell <- vglm (healthre ~ educ, cumulative (parallel
= TRUE, reverse = FALSE), data = chp4.po). Following the model
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equation, healthre ~ educ, the argument cumulative (parallel =
TRUE, reverse = FALSE) tells R to fit a cumulative odds model with the parallel
odds or proportional odds assumption and nonreversed ordinal categories. The data
= chp4.po argument specifies the data frame. The summary (modell) com-
mand produces the following output.

H

| > # One-predictor model with the vglm() function in VGAM

> library (VGAM)

> modell <- vglm(healthre ~ educ, cumulative (parallel = TRUE, reverse = FALSE),
data = chp4.po)

> summary (modell)

Call:
vglm(formula = healthre ~ educ, family = cumulative (parallel = TRUE,
reverse = FALSE), data = chp4.po)

Pearson residuals:

Min 10 Median 3Q Max
logitlink (P[Y<=1]) -0.9413 -0.2425 -0.1716 -0.1312 7.102
logitlink (P[Y<=2]) -2.2568 -0.7070 =0+3115 0.5197 3.031
logitlink (P[Y<=3]) -6.6746 0.1568 0.3433 0.6484 1.013
Coefficients:

Estimate Std. Error z value Pr(>|z])

(Intercept) :1 -0.35539 0.21332 -1.666 0.0957 .
(Intercept) :2 1.52580 0.20608 7.404 1.,32e-13 ***
(Intercept) :3 3.80557 0.22311 17.057 < 2e-16 **x*
educ -0.17902 0.01497 =11;;955 < 2e-16 ***

BlgnidE, cotdess ‘0 YWekr g gp1 Yz g 01 % D050 1 VAL

Names of linear predictors: logitlink(P[Y<=1]), logitlink(P[¥Y<=2]),
logitlink (P[Y<=3])

Residual deviance: 4332.323 on 5615 degrees of freedom

Log-likelihood: -2166.162 on 5615 degrees of freedom

Number of Fisher scoring iterations: 4

No Hauck-Donner effect found in any of the estimates

Exponentiated coefficients:
educ
0.8360901
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4.5.3 Interpreting R Output

The R output includes the call, the Pearson residuals, the coefficients, the number and
names of the three linear predictors, the residual deviance, the log-likelihood value, the
number of iterations, and the exponentiated coefficients.

The intercepts in the coefficients table are the same as those in the threshold coefficients
table from the c1m () function. The logit coefficient of the educ predictor has the
same magnitude as that in the coefficients table from the c1m () function, but has a
negative sign. This is due to different parameterizations between the clm () function
and the vglm () function. In the PO model equation for the vglm () function, the
signs before the coefficients are positive as follows.

logit[P(Y < jloy, 22, .. %)] = a5+ B1 X1+ BoXy + ... + B X, (4.3)

In PO models, we estimate the logit or the log odds of being at or below a particular category
(Y < j). The link functions for the three linear predictors in the model are logit
(P[Y<=1]), logit (P[Y<=2]),and logit (P[Y<=3]). The log odds of being
at or below category 1, logit (P[Y<=1]), compares the probability of category 1 to the
probabilities of categories 2, 3, and 4; the log odds of being at or below category 2,
logit (P[Y<=2]), compares the probabilities of categoriesl and 2 to the probabilities of
categories 3 and 4; and the log odds of being at or below category 3, logit (P[Y<=3]),
compares the probabilities of categories 1, 2, and 3 to the probability of category 4.

4.5.4 0dds Ratios

The exp (coef (modell, matrix = TRUE) ) command provides the odds ratios of
being at or below a category and the exp (confint (modell, matrix = TRUE))

command produces the corresponding confidence intervals. We use the cbind
(exp (coef (modell)), exp (confint (modell))) command to combine the
odds ratios and the confidence intervals. The following output is displayed.

> exp (coef (modell, matrix = TRUE))

logit(P[¥Y<=1]) logit (P[Y<=2]) logit(P[Y<=3])
(Intercept) 0.7009020 4.5988016 44.9507590
educ 0.8360901 0.8360901 0.8360901
> exp (confint (modell, matrix = TRUE))
2.5% 97.5 %
(Intercept) :1 0.4614005 1.0647226
(Intercept) :2 3.0706560 6.8874455
(Intercept) :3 29.0288233 69.6056713
educ 0.8119083 0.8609921
> cbind (exp (coef (modell) ), exp (confint (modell)))
2.5% 97.5 %
(Intercept) :1 0.7009020 0.4614005 1.0647226
(Intercept) :2 4.5988016 3.0706560 6.8874455

(Intercept) :3 44.9507590 29.0288233 69.6056713
educ 0.8360901 0.8119083 0.8609921
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4.5.5 AIC Statistic
We can get the AIC statistic using AIC (modell).

> AIC (modell)
[1] 4340.323

4.5.6 Logit Coefficients of Being at or Above a Category

With the reverse = TRUE option, we can estimate the logit coefficients of being at or
above a particular category of an ordinal outcome variable. The summary (modellb)
command produces the following output.

> # Logit coefficients of being at or above a category

> modellb <- vglm(healthre ~ educ, cumulative (parallel = TRUE, reverse = TRUE),
data = chp4.po)

> summary (modellb)

| Call:
t vglm(formula = healthre ~ educ, family = cumulative (parallel = TRUE,
i reverse = TRUE), data = chp4.po)

| Pearson residuals:

| Min 1Q Median 3Q Max
I logitlink(P[Y>=2]) -7.102 0.1312 0.1716 0.2425 0.9413
logitlink(P[Y>=3]) -3.031 -0.5197 0.23115 0.7070 2.2568
logitlink(P[Y>=4]) =1,.013 -0.6484 -0.3433 -0.1568 6.6746
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept):1 0.35539 0:21332 1.666 0...0957. ..
(Intercept) :2 =1.52580 0.20608 -7.404 1.32e-13 ***
(Intercept) :3 -3.80557 0.22311 -17.057 < 2e-16 ***
educ 0.17902 0.01497 11.955 < 2e-16 ***

Signif, coded: ( VW& [ [OT ¥%er.g.0T MELE5 Y0 0,100 L

Names of linear predictors: logitlink(P[Y>=2]), logitlink(P[Y>=3]),
logitlink (P[Y>=4])

Residual deviance: 4332.323 on 5615 degrees of freedom

Log-likelihood: -2166.162 on 5615 degrees of freedom

Number of Fisher scoring iterations: 4

No Hauck-Donner effect found in any of the estimates

Exponentiated coefficients:
educ
1.196043
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The intercepts and the coefficient in the output by the summary (modellb)
command and in that by the summary (modell) command have opposite signs
since the former model estimates of the log odds of being at or below a particular
category (¥ < j), whereas the latter model estimates the log odds of being at or above a

particular category (Y > j+ ). Please note that the log odds (Y > j+ 1) equal the log
odds (Y > j).

4.5.7 Odds Ratios of Being at or Above a Category

We again use the exp (coef (modellb, matrix = TRUE)) command to obtain
the odds ratios of being at or above a category and use the exp (confint (modellb,
matrix = TRUE)) command to produce the corresponding confidence intervals.
The results are combined using cbind (exp (coef (modellb)), exp (con-
fint (modellb) ) ). The following output is created.

> exp (coef (modellb, matrix = TRUE))

logit(P[Y>=2]) logit(P[Y>=3]) logit (P[Y>=4])
(Intercept) 1.426733 0.217448 0.02224657
Educ 1.196043 1.196043 1.19604334
> exp (confint (modellb, matrix = TRUE))
2.5% 97.5 %
(Intercept) :1 0.93921178 2.16731441
(Intercept) :2 0.14519171 0.32566331
(Intercept) :3 0.01436665 0.03444852
educ 1.16145082 1.23166615
> cbind (exp (coef (modellb)), exp (confint (modellb))) i
2.5% 97.5%
(Intercept) :1 1.42673306 0.93921178 2.16731441
(Intercept) :2 0.21744795 0..1:451.91.71 0.32566331
(Intercept) :3 0.02224657 0.01436665 0.03444852
educ 1.19604334 1.16145082 1.23166615

4.6 FITTING A MULTIPLE-PREDICTOR PO
MODEL USING THE vglm () FUNCTION

4.6.1 Using the vglm() Function to Fit a Multiple-Predictor
PO Model

To fit the same multiple-predictor PO model in the preceding section, we use the
following command: model2 <- vglm(healthre ~ educ + maritals +
female, cumulative (parallel = TRUE, reverse = FALSE), data
= chp4.po). The resulting output is displayed as follows.
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> # Multiple-predictor model with the vglm() function in VGAM

> model2 <- vglm(healthre ~ educ + maritals + female, cumulative (parallel = TRUE,
reverse = FALSE), data = chp4.po)

> summary (model2)

Calls
vglm(formula = healthre ~ educ + maritals + female, family = cumulative (parallel =
TRUE,

reverse = FALSE), data = chp4.po)

Pearson residuals:

' Min 1Q Median 3Q Max

| logitlink(P[Y<=1]) -0.8733 -0.2335 -0.1697 -0.1288 7.507

| logitlink(P[Y<=2]) -2.3796 -0.7354 -0.3226 0.5107 3.293

: logitlink (P[¥Y<=3]) -5.9188 0.1555 0.3464 0.6210 1.086

| Coefficients:

Estimate Std. Error z value Pr(>|zl)

(Intercept) :1 -0.25432 0.21950 =1.:159 0.246613

(Intercept) :2 1.63442 0.21261 7.687 1.5e-14 *#**

i (Intercept) :3 3.92426 0.23005 17.058 < 2e-16 ***

| educ -0.17502 0.01503 -11.646 < 2e-16 ***

|  maritals -0.29157 0.08842 -3.297 0.000976 ***
female -0.06702 0.08754 -0.766 0.443957

Slgnif. codes: D Y%L [ 001 ***7 §.01 " 0,05 %’ 0.1 VT 1

Names of linear predictors: logitlink(P[Y<=1]), logitlink(P[Y<=2]),
logitlink (P[Y<=3])

Residual deviance: 4321.01 on 5613 degrees of freedom

| Log-likelihood: -2160.505 on 5613 degrees of freedom

| Number of Fisher scoring iterations: 4

No Hauck-Donner effect found in any of the estimates

Exponentiated coefficients:

educ maritals female
0.8394376 0.7470883 0.9351809

The coef (model2, matrix = TRUE) command produces the coefficients table.
Again, we can get the odds ratios and the corresponding confidence intervals using
exp (coef (model2, matrix = TRUE)) and exp (confint (model?2,
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matrix = TRUE)), respectively. The cbind (exp (coef (model2)),
exp (confint (model?2) ) ) command combines the results.

> coef (model2, matrix = TRUE)

logit(P[Y<=1]) logit (P[Y<=2]) logit (P[Y<=3])
(Intercept) -0.2543170 1.6344197 3.9242577
! educ -0.1750231 -0.1750231 -0.1750231 i
, maritals =0.2915719 -0.2915719 -0.2915719 ]
§ female -0.0670153 -0.0670153 -0.0670153
i

> exp (coef (model2, matrix = TRUE))

logit(P[¥<=1]) logit (P[Y<=2]) logit(P[Y<=3])
(Intercept) 0.7754460 5.1264821 50.6154915
educ 0.8394376 0.8394376 0.8394376
maritals 0.7470883 0.7470883 0.7470883
female 0.9351809 0.9351809 0.9351809

> exp (confint (model2, matrix = TRUE))

2.5% 97.5 %
(Intercept) :1 0.5043268 1...1923151
(Intercept) :2 3.3794230 7.7767178 |
(Intercept) :3 32.2449950 79.4519578 |
educ 0.8150731 0.8645305
maritals 0.6282100 0.8884625
female 0.7877356 1.1102245

> cbind (exp (coef (model2)), exp (confint (model2))) ]
2.5% 97.5 %

(Intercept) :1 0.7754460 0.5043268 1.1923151 i
(Intercept) :2 5.1264821 3.3794230 7.7767178 §
(Intercept) :3 50.6154915 32.2449950 79.4519578
educ 0.8394376 0.8150731 0.8645305 (
maritals 0.7470883 0.6282100 0.8884625
female 0.9351809 0.7877356 1.1102245 l

The AIC statistic of the fitted model can be obtained with AIC (model2).

> AIC (model2)
[1] 4333.01

We can also use the nagelkerke () function in the rcompanion package to
obtain the three types of pseudo R? statistics for model2. The syntax is nagel-
kerke (model2). The results are omitted here.
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4.6.2 Logit Coefficients of Being at or Above a Category
in the Multiple-Predictor PO Model

We add the reverse = TRUE option to the multiple-predictor PO model so we can
estimate the logit coefficients of being at or above a particular category of the ordinal

outcome variable. The summary (model2b) command produces the following output.

| > # Logit coefficients of being at or above a category with reverse = TRUE

i > model2b <- vglm(healthre ~ educ + maritals + female, cumulative (parallel = TRUE,
reverse = TRUE), data = chp4.po)

> summary (model2b)

Calils
vglm(formula = healthre ~ educ + maritals + female, family = cumulative (parallel =
TRUE,

reverse = TRUE), data = chp4.po)

Pearson residuals:

Min 1Q Median 3Q Max

logitlink (P[Y>=2]) -7.507 0.1288 0.1697 0..2335 0.8733
logitlink (P[Y>=3]) =34293 -0.5107 0.3226 0.7354 2.3796
logitlink (P[Y>=4]) -1.086 -0.6210 -0.3464 =0, 1555 5.9188
Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept):1 0.25432 0.21950 1,159 0.246613
(Intercept) :2 -1.63442 0.21261 -7.687 1.5e-14 ***
(Intercept) :3 -3.92426 0.23005 =17.058 < 2e-16 ***
educ 0.17502 0.01503 11.646 < 2e-16 **xx
maritals 0.29157 0.08842 3.297 0.000976 ***
female 0.06702 0.08754 0.766 0.443957

! Signif. codes: D “w&df 0 001 “R-0,0) Y D05 M. P DIV L

Names of linear predictors: logitlink(P[Y>=2]), logitlink(P[Y>=3]),
logitlink (P[Y>=4])

Residual deviance: 4321.01 on 5613 degrees of freedom
Log-likelihood: -2160.505 on 5613 degrees of freedom
Number of Fisher scoring iterations: 4

No Hauck-Donner effect found in any of the estimates

Exponentiated coefficients:

educ maritals female
1.191274 1.338530 1.069312
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We can obtain the coefficients table, the odds ratios, and the corresponding confidence
intervals with the coef (), exp (coef()), exp (confint ()), and cbind ()
functions. The output is omitted here.

4.6.3 Computing the Predicted Probabilities With the
predict () Function

We can use the predict () function to compute the predicted probabilities of being
in a particular category of the ordinal response variable. For example, we would like to
compute the predicted probabilities for educ at the specified values of 12, 14, and 16
when holding the other predictor variables at their means. We first create a data frame
with the data. frame () function and then apply the predict () function. In the
data.frame () function, educ = c (12, 14, 16) specifies the values of educ;
maritals = rep(mean(maritals), 3) repeats the mean of maritals
three times; and female = rep (mean(female), 3) repeats the mean of
female three times. The created data frame is assigned to an object named newl.

> newl <- data.frame (educ = c (12, 14, 16),

+ maritals = rep(mean (maritals), 3),
i+ female = rep (mean(female), 3))
i > newl
educ maritals female
| 1 12 0.4372664 0.5563267
| 2 14 0.4372664 0.5563267
| 3 16 0.4372664 0.5563267

 B— S —————

In the predict () function, we first specify the model object mode 12 and then the
newdata = newl argument, followed by the type = "response" argument for
the predicted probabilities. The predicted probabilities labeled from pred.prob.1
to pred.prob.4 are provided in the data frame named newl.

>newl[ , c(’pred.prob’)] <- predict (model2, newdata = newl, type = "response")
> newl
educ maritals female pred.prob.1 pred.prob.2 pred.prob.3 pred.prob.4
12 0.4372664 0.5563267 0.07451130 0.27285538 0.49276437 0.15986894
14 0.4372664 0.5563267 0.05368624 0.21907049 0.51461537 0.21262789
16 0.4372664 0.5563267 0.03843981 0.17059935 0.51390465 0.27705620

4.6.4 Computing the Predicted Probabilities With the

ggpredict () Function in the ggeffects Package

We can also use the ggpredict () function in the ggeffects package (Liidecke,
2018b) to compute the predicted probabilities of being in a particular category of the
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ordinal response variable at specified values of the predictor variables. The command is as
follows: margins.e2.ciNA <- ggpredict (model2, terms = "educ[12,
14, 16]", ci = NA).In the ggpredict () function, model2 is the fitted model;
the terms = "educ[12, 14, 16]" option specifies the predictor variable educ at
the values of 12, 14, and 16 when holding the other predictor variables at their means;
and ci = NA specifies no confidence intervals. The terms option can specify up to
four variables, including the second to fourth grouping variables. The ci = NA option is
needed there since the confidence intervals are not available for the predicted probabilities
of a particular category in the models estimated by the vglm () function. Currently the
confidence intervals can only be obtained for the cumulative probabilities. The output is
assigned to an object named margins.e2.ciNA.

U S S S A SLLLLLL

> margins.e2.ciNA <- ggpredict (model2, terms = "educ[12, 14, 16]", ci = NA)
> margins.e2.ciNA

# Predicted probabilities of healthre

# Response Level =1

| educ | Predicted
12| 0.07

14 | 0.05
| 16 | 0.04

educ | Predicted

12 | T 0.27

14 | 0.22

{ 16 | 0.17

{ educ | Predicted
T
12 | 0.49
i 14 | 0551
l 16 | 0.51

! educ | Predicted

" ____________________ M
1 12 I 0.16
14 | 0.21 I
{ 16 | 0.28 ;

Adjusted for:
*maritals = 0.44
* female = 0.56
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FIGURE 4.2 @ Estimated Probabilities of Being in Categories 1, 2, 3, and 4 for educ
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When educ equals 12, 14, and 16, and other predictor variables are held at their
means, the predicted probabilities of being in each category (i.e., Y= 1, 2, 3, and 4) are
displayed in the output. The last section titled “Adjusted for” lists the means of
the other two variables.

The predicted probabilities for all four response levels are plotted using the plot
(margins.e2.ciNA) function. Figure 4.2 shows the estimated probabilities of being
in each category (e, Y= 1, 2, 3, and 4) for educ at 12, 14, and 16.

The graph shows that people with higher levels of education are less likely associated
with poor and fair health conditions (categories 1 and 2). In addition, with the increase
in the years of education, the probabilities of being in good and excellent health
conditions (categories 3 and 4) increase.

4.6.5 Computing the Cumulative Probabilities With the
ggpredict () Function

We can also compute the cumulative probabilities of being at or above a particular
category of the ordinal response variable at specified values of the predictor variables.



The command margins.e2 <- ggpredict (model2, terms
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"educ

[12, 14, 16]") tells R to compute the cumulative probabilities of being at or above
a category of the ordinal response variable using the ggpredict () function by
removing the ci = NA option. The output is assigned an objected named mar-
gins.e2.The as.data.frame () function is used to request the standard errors.

{

177

# Predicted probabilities of healthre

i # Response Level = P[Y >= 2]

educ

Predicted

| [0.94, 0.91]
| [0.96, 0.94]
| [0.97, 0.95]

| [0.68, 0.63]
| [0.75, 0.71]
| [0.81, 0.77]

W O do U WN

§

| S ———

X
12
12
12
14
14
14
16
16
16

Adjusted for:
* maritals = 0.44
* female = 0.56

predicted

0

o o oo

.9254887
.6526333
.1598689
.9463138
.7272433
0.
0.
0.
0.

2126279
9615602
7909608
2770562

> plot (margins.e2)

> as.data.frame (margins.e2)

| 95% CI

| [0.18, 0.14]

| [0.23, 0.19]

| [0.30, 0.25]
std.error conf.low
0.09662647 0.9375413
0.05581345 0.6770017
0.06749109 0.1784443
0.09773966 0.9552544
0.05309915 0.7473924
0.05739799 0.2320700
0.10759248 0.9686394
0.06580753 0.8114879
0.06197374 0.3020310

> margins.e2 <- ggpredict (model2, terms = "educ[12, 14, 16]")
> margins.e2

conf.high
-91:1.3303
.6274382
.1428909
.9357070
.7061189
.1944022
.9529605
.7688353
.2533968

OO0 000000 0O

response.level

PlY >= 2]
P[Y >= 3]
P[Y >= 4]
P[Y >= 2]
P[Y >= 3]
P[Y >= 4]
P[Y >= 2]
P[Y >= 3]
P[Y >= 4]

group

I e R R
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Predicted probabilities of healthre
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FIGURE 4.3 @ Cumulative Probabilities of Being at or Above Categories 2, 3, and 4 for educ
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The output provides the three cumulative probabilities with the confidence intervals for
educ at 12, 14, and 16, while other predictor variables are held at their means. Please
note that the standard errors are on the logit-link scale and are not transformed back to
the probabilities. The results are plotted by using the plot (margins.e2) func-
tion. Figure 4.3 shows the cumulative probabilities of being at or above categories 2, 3,
and 4 for educ.

With the increase in the years of education, people are more likely to be in better health
conditions.

4.6.6 Using the 1rtest () Function to Test the PO Assumption

The 1rtest () function is used to test the PO assumption. We fit a cumulative odds
model, model2c, with the parallel = FALSE option and then compare it with
the PO model, mode12, with the parallel = TRUE option. A nonsignificant test
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indicates that the proportional odds assumption is upheld for the PO model. The
results of the 1rtest (model2, model2c) command are shown as follows.

’ > # PO assumption test

> model2c <- vglm(healthre ~ educ + maritals + female, cumulative (parallel = FALSE,
i reverse = FALSE) ,data = chp4.po)

> lrtest (model2, model2c)

Likelihood ratio test

Model 1: healthre ~ educ + maritals + female
!  Model 2: healthre ~ educ + maritals + female

{ #Df LogLik  Df Chisq  Pr(>Chisq) |
| 1 5613 -2160.5 |
| 2 5607 -2155.7 -6  9.6479 0.1403

The likelihood ratio test yields x%, = 9.648, p = .140, which indicates that the
. . © .
proportional odds assumption for the overall model is met.

4.6.7 Model Comparison Using the Likelihood Ratio Test With
the 1rtest () Function

Since the anova () function for model comparisons does not work with the vglm ()
function, the 1rtest () function is used. The lrtest (modell, model?2)
command compares the simple-predictor PO model and the multiple-predictor PO
model using the likelihood ratio test. The resulting output is as follows.

g R
i !
x > lrtest(modell, model2)

| Likelihood ratio test

Model 1: healthre ~ educ
Model 2: healthre ~ educ + maritals + female

#Df LogLik Df Chisqg Pr (>Chisq) i
1 5615  -2166.2 |
2 5613 -2160.5 ~2 11.313 0.003496 ** {

Signif. codes: 0 ‘***’ 0,001 ‘**’ 0,01 “*/ 0.05 *.” 0.1 ‘' 1 i

The difference in deviance, G = Dgequced — Drat = 2 X (2,166.2 — 2,160.5) = 11.4.
The likelihood ratio test X%z) = 11.313, p < .001. This result indicates that the full
model has a better fit than the one-predictor model.
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4.7 MAKING PUBLICATION-QUALITY TABLES

4.7.1 Presenting the Results of the c1m Models Using the
stargazer Package

We can use the stargazer package (Hlavac, 2018) to make a table containing the
results of the fitted models with the cIm () function. Since the package has been installed
in earlier chapters, we only need to load the package by typing 1ibrary (stargazer).
After fitting the single-predictor model PO.1 and the multiple-predictor model
PO.2, we load the stargazer package and then use the command as follows:
stargazer (PO.1, PO.2, type = "text", align = TRUE, out =
"po2mod. txt"). In the stargazer () function, we first specify the two model
objects to be presented and then the type of table. The option type = "text" specifies
the table type and the align = TRUE option aligns the results of the two models. The
out = "po2mod. txt" argument saves the output named po2mod. txt.

> library (stargazer)
> stargazer (PO.1, PO.2, type = "text", align = TRUE, out = "po2mod. txt")

i healthre
(1) (2)
maritals 0.292%**
(0.088)
% educ 051 79%%x 0.175*%*
| (0.015) (0.015)
| female 0.067
; (0.088)
S PP
2 Observations 1,873 1,873
| Log Likelihood -2,166.161 -2,160.505
Note: *pxl 1y *%p<0,05; *%*p<0401

We can also create the table in the HTML format and copy it into Microsoft Word. The
command is as follows: stargazer (PO.1, PO.2, type = "html", align =
TRUE, out = "po2mod.htm"). The resulting table is omitted here.
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4.7.2 Presenting the Results of the vglm Models Using the
texreg Package

The stargazer () function currently cannot directly produce the results table from
the vg1lm models, so we use the screenreg () and htmlreg () functions from the
texreg package (Leifeld, 2013). Since texreq is a user-written package, you need to
install it first by typing install.packages (“texreg”) and then load the
package by typing library (texreg).

After we use the vglm () function to fit the single-predictor model mode 11 and the
multiple-predictor model mode12, we create a table containing the results of both
models with the following command: screenreg (list (modell, model2)).
In the screenreg () function, we specify the two model objects to be presented
with the 1ist () function. The output is a plain text table.

> # Presenting the results of the vglm Models using the texreg package
> library (texreg)

Version: 14375
Date: 2020-06-17
Author: Philip Leifeld (University of Essex)

Consider submitting praise using the praise or praise_interactive functions.
Please cite the JSS article in your publications -- see citation ("texreg").
> screenreg (list (modell, model2))

Model 1 Model 2

(Intercept) :1 -0.36 =025,

(0.21) (0.22)
] (Intercept) :2 1.53 * ok x 1.63 F Ak H
(0.21) (0.21)
i (Intercept) :3 3.81 wEX 3.:92 XA
g (0.22) (0.23)
i educ -0.18 ek -0.18 HH :
(0.01) (0.02)
| maritals -0.29 *ok ok |
(0.09) 3
| female -0.07 !
(0.09)
________________________________________________________ |
Log Likelihood -2166.16 -2160.51 i
[ DF 5615 5613
| Num. obs 5619 5619
| *** p < 0.001; ** p < 0.01; *p < 0.05 x
|
> htmlreg(list(modell, model2), file="chap4po.doc", doctype=TRUE, html.tag=TRUE, !
head. tag=TRUE) i
The table was written to the file ' chap4po.doc’. |

i
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TABLE 42 @ Results of the Proportional Odds Models: Single-Predictor Model

and Multiple-Predictor PO Model (Shown in Original Format Generated by R)

B Lo

(Intercept):1 -0.36 -0.25
(0.21) (0:22)
ftercepia = je3e . e
. s 0.21)
(Intercept):3 381 392
(0.22) (0.23)
Edbc @ e
Bl
maritals -0.297
(0.09)
female - 007
. i (009
Log Likelihood -2,166.16 -2,160.51
e “1:1715'}621_5‘ o b
Num. obs. 5,619 5,619
***p < 0.001
**p < 0.01
*p < 0.05

We can also use the htmlreg () function to create a regression table for the estimated
results and save it to a Microsoft Word file named chap4po . doc with the following
command: htmlreg (list (modell, model?2), file = "chap4po.doc",

doctype = TRUE, html.tag = TRUE, head.tag TRUE) . It automati-
cally produces Table 4.2, as shown here in its original format, presenting the results of
both the single-predictor and the multiple-predictor PO models.

4.8 REPORTING THE RESULTS

Weriting the results of ordinal logistic regression models is similar to that of binary
logistic regression models.

First, describe the statistical method you used for data analysis, the dependent variable
and the independent variables in the models, and your research hypothesis, or the
purpose of your study.
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Second, report the model fit statistics, including but not limited to the likelihood ratio
statistic and the associated p value, and the pseudo R?, followed by a concise statement
of interpretation on whether the fitted model is better than the null model. If more fic
statistics, such as various pseudo R? values, deviance statistic, and AIC and BIC sta-
tistics are computed, then include them in a table.

Third, report the parameter estimates for the predictor variables, their standard errors,
the associated p values, and odds ratios either in a table or in the text. A table is
preferable for models with multiple predictors. The odds ratios for each predictor
should be interpreted.

If more than one model is fitted, then the results of all the competing models
from the simple model to the full model should be presented in a table. The
following is an example of summarizing the results from the ordinal logistic
regression model.

The proportional odds model was fitted to estimate the ordinal outcome
variable, health status, from a set of predictor variables, such as marital
status, years of education, and gender. A single-predictor model with marital
status as the predictor was fitted first, and then the full model with all the
predictors was fitted. The likelihood ratio test is used to compare the two
models, xfz) = 11.313, p < .001. The result indicated that the full model fitted
data better than the single-predictor model.

For the maritals predictor, OR = 1.339, which was greater than 1. This
indicated that the odds of being above a particular category of health status
(better health status) for the married were 1.339 times the odds for the
unmarried when holding all the other predictors constant.

For the educ predictor, OR = 1.191, which was greater than 1. This
indicated that the odds of being above a particular category of health status
(better health status) increased by a factor of 1.191 for a one-unit increase in
the predictor, education, when holding other predictors constant. In other
words, for a one-unit increase in education, the odds of being healthier
increased by 19.1%.

For female, B = .067, p = .444, which was not significantly different from
0; OR = 1.069, which almost equaled 1. This indicated that there was no
relationship between being a female and the cumulative odds of being in
better health status.
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4.9 SUMMARY OF R COMMANDS IN
THIS CHAPTER

| # Chap 4 R Script

# Remove all objects
rm(list = 1s(all = TRUE))

# The following user-written packages need to be installed first by using H
install.packages (“ ”) and then by loading it with library()
# library (ordinal)

# library (rcompanion) # It is already installed for Chapter 3
# library(ggeffects) # It is already installed for Chapter 2
# library (stargazer) # It is already installed for Chapter 2

# library (VGAM)
# library (texregq)

# Import GSS 2016 Stata data file

chp4.po <- read.dta("C:/CDA/gss2016.dta") |
chp4.po$healthre <- factor (chp4.po$healthre, ordered=TRUE) ‘
chp4.po$educ <- as.numeric (chp4.po$educ)
chp4.po$wrkfull <- as.numeric (chp4.po$wrkfull)
chp4.po$maritals <- as.numeric (chp4.po$maritals)
attach (chp4.po) |
str (healthre) i

# One-predictor model with the clm() function in ordinal
library(ordinal)

PO.1 <- clm(healthre ~ educ, data = chp4.po)

summary (PO.1)

coef (PO.1)

confint (PO.1)

exp (coef (PO.1))

exp (confint (PO.1))

# Null model with the intercept only g
PO.0 <- clm(healthre ~ 1, data = chp4.po)
summary (PO.0)

# Testing the overall model using the likelihood ratio test
anova (P0.0, PO.1)

| # Pseudo R2

library (rcompanion)
nagelkerke (PO.1)

| LLM <- logLik (PO.1)
| LLO <- logLik(PO.0) '
| McFadden <- 1- (LLM/LLO) i
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McFadden

CS <- l-exp (2* (LLO-LLM) /1873)
cs

NG <- CS/ (1l-exp (2*LL0/1873))
NG

# PO assumption test
nominal_test(PO.1)

# Multiple-predictor model with the clm() function

PO.2 <- clm(healthre ~ maritals + educ + female, data = chp4.po)
summary (PO.2)

coef (P0O.2)

confint (PO.2)

exp (coef (PO.2))

exp (confint (P0O.2))

exp (-coef (PO.2))
exp (-confint (PO.2))

# Predicted probabilities with ggpredict() in ggeffects
library(ggeffects)

margins.e <- ggpredict(PO.2, terms = "educ[12, 14, 16]1")
margins.e

plot(margins.e)

# Predicted probabilities with predict(): Omitted in the chapter
New <- data.frame (educ=c(12,14,16),

maritals=rep(mean (maritals), 3),

female=rep (mean (female), 3))
new
new[,c(’'pred.prob’)] <- predict(PO.2, newdata=new, type="prob",
interval=TRUE)
new

# Testing the overall model using the likelihood ratio test
anova (PO.0, PO.2)

# Pseudo R2
nagelkerke (PO.2)

# PO assumption test
nominal_test (PO.2)

# Model comparison using the likelihood ratio test
anova (PO.1, PO.2)

# Presenting the results of the clm models using the stargazer package
library(stargazer)

stargazer (PO.1, PO.2, type="text", align=TRUE, out="po2mod. txt")
stargazer (PO.1, PO.2, type="html", align=TRUE, out="po2mod.htm")

# One-predictor model with the vglm() function in VGAM
library (VGAM)

se.fit=TRUE,
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modell <- vglm(healthre ~ educ, cumulative(parallel = TRUE, reverse = FALSE),
data = chp4.po)

summary (modell)

exp (coef (modell, matrix = TRUE))

exp (confint (modell, matrix = TRUE))

cbind (exp (coef (modell)), exp (confint (modell)))

nagelkerke (modell)

AIC (modell)

# Logit coefficients of being at or above a category

modellb <- vglm(healthre ~ educ, cumulative (parallel = TRUE, reverse = TRUE),
data = chp4.po)

summary (modellb)

exp (coef (modellb, matrix = TRUE))

exp (confint (modellb, matrix = TRUE) )

cbind (exp (coef (modellb)), exp (confint (modellb)))

# Multiple-predictor model with the vglm() function in VGAM
model2 <- vglm(healthre ~ educ + maritals + female, cumulative (parallel = TRUE,
reverse = FALSE) ,data = chp4.po)

summary (model2)

coef (model2, matrix = TRUE)

confint (model2, matrix = TRUE)

exp (coef (model2, matrix = TRUE))

exp (confint (model2, matrix = TRUE))

cbind (exp (coef (model2) ), exp (confint (model2)))

AIC (model2)

# nagelkerke (model2)

# Predicted probabilities with predict()
newl <- data.frame (educ=c(12,14,16),
maritals=rep (mean(maritals), 3),
female=rep (mean (female), 3))
newl
newl[,c(’pred.prob’)] <- predict (model2, newdata=newl, type="response")
newl

# Predicted probabilities with ggpredict() in ggeffects

library (ggeffects)

margins.e2.ciNA <- ggpredict (model2, terms="educ([12, 14, 16]", ci=NA)
margins.e2.ciNA

plot(margins.e2.ciNA)

margins.e2 <- ggpredict(model2, terms="educ([12, 14, 16]")
margins.e2

as.data.frame (margins.e2)

plot(margins.e2)

# Logit coefficients of being at or above a category with reverse = TRUE

model2b <- vglm(healthre ~ educ + maritals + female, cumulative (parallel = TRUE,
reverse = TRUE), data = chp4.po)

summary (model2b)

coef (model2b, matrix = TRUE)

confint (model2b, matrix = TRUE)

exp (coef (model2b, matrix = TRUE))

exp (confint (model2b, matrix = TRUE))

cbind (exp (coef (model2b)), exp (confint (model2b)))

# AIC (model2b)
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# Testing the Overall Model Using the Likelihood Ratio Test: Omitted in the chapter
model0 <- vglm(healthre ~ 1, cumulative (parallel = TRUE, reverse = FALSE), data =
chp4.po)

summary (model0)

lrtest (modelO, modell)

lrtest (model0, model2)

# PO assumption test
model2c <- vglm(healthre ~ educ + maritals + female, cumulative (parallel = FALSE,

reverse = FALSE),data = chp4.po)
lrtest (model2, model2c)

# Model comparison with the likelihood ratio test
lrtest (modell, model2)

# Presenting the results of the vglm Models using the texreg package

library (texreg)

screenreg (list (modell, model2))

htmlreg(list (modell, model2), file="chap4po.doc", doctype=TRUE, html.tag=TRUE,
head.tag=TRUE)

detach (chp4.po)




Glossary

An ordinal probit regression model is a regression model for an ordinal response variable with the
probit link.

Ordinal logistic regression models are regression models for ordinal response variables with the
logistic function or the logit link.

The cumulative probability of being at or below a category P[Y < j) equals the sum of the probabilities
of all categories at or below that category.

The odds of being at or below a category in ordinal logistic regression equals the probability of being at
or below a category divided by the probability of being above that category.

The proportional odds (PO) model is one of the most commonly used models for the analysis of ordinal
response variables. The odds ratio of any predictor is assumed to be constant across all categories, so it
is referred to as the proportional odds assumption or the parallel lines assumption.

Exercises

Use the GSS 2016 data available at https://edge.sagepub.com/liu1e for the following problems.

1. Conduct an analysis for a proportional odds model to estimate the ordinal response variable
fechld from the three predictor variables sex, educ, and age.

Identify the likelihood ratio test of the model and interpret it.
Compute the deviance statistic for the model.
List three measures of pseudo R? and the AIC statistic.

Identify the logit coefficient, the Wald z test, and the 95% confidence interval for the predictor
variables sex and educ. Are they statistically significant?

Compute the odds ratios for sex and educ.
Test the proportional odds assumption and interpret the results.

. What are the important criteria you may use for model comparisons?
Make a publication-quality table containing the estimated logit coefficients.

Write a report to summarize the results from the output.




