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POISSON REGRESSION MODELS

OBIECTENES OF THIS CHAPTER

This chapter introduces Poisson regression models. It first starts with an introduction to
the Poisson regression model followed by a discussion of the incidence rates and incidence
rate ratios in the model, goodness-of-fit statistics, and how to interpret parameter
estimates. After a description of the research example, the data, and the sample, a one-
predictor Poisson regression model and a multiple-predictor Poisson regression model are
illustrated with the glm () function in R. The vglm () function in the VGAM package is
also used to fit the multiple-predictor model. R commands and output are explained in
detail. This chapter focuses on fitting the Poisson regression models with R, as well as on
interpreting and presenting the results. After reading this chapter, you should be able to:

e Identify when Poisson regression models are used.

e Fit a Poisson regression model using R.

e Interpret the output.

e Interpret the incidence rate ratios and marginal effects.
e Compute, plot, and interpret the predicted counts.

e Compare models using the likelihood ratio test.

e Present results in publication-quality tables using R.

e Write the results for publication.
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8.1 POISSON REGRESSION MODELS:
AN INTRODUCTION

The Poisson regression model is used to estimate a count response variable. The count
response variable can be a count of events, or the number of events during a time
period or in a location. For example, researchers are interested in the number of AP
courses which students have taken in high school, the number of absences in a college
class, the number of publications by new faculty in a year, the number of visits to a
doctor in a year, and the number of hospitalized patients. These count response var-
iables are nonnegative integers and follow a Poisson distribution.

The Poisson regression model (Cameron & Trivedi, 2013; Hilbe, 2014; Long &
Freese, 2014) can be expressed as follows:

ln(/.L) = a +B1X1 +BZX2 Flei +BP)(P (81)

where w is the mean or the expected number of events; « is the intercept; and B, B2, ...,
B, are the Poisson coefficients for the predictors. The left side of the equation, In(uw), is
the log link function. The right side of the equation is the linear predictor. An important
assumption of the Poisson regression model is that the mean of the count response
variable is equal to the variance of the variable. E(Y) = Variance (Y) = u. By expo-
nentiating both sides of the equation, we get the predicted mean of the count response
variable:

e exp(a FRX B .+ BPXP) 8.2)

When a count response variable is the number of events during a time period or in a
location, a count of events can also referred to as an incidence rate. If we define the
incidence rate as the expected number of events per unit time or location, u/z the
Poisson model can also be expressed as follows:

ln(u/t) = +B1X1 + BZXZ + w2 B}?)(P (83)

where p is the mean count; # is a period of time; w/z is the incidence rate; and In(u/?) is
the log of the incidence rate or log incidence rate. Since In(u/?) = In(u) — In(?), the
equation can be rewritten as:

In(u) = In(z) +a + B X + B, X0 + ... +B,X, (8.4)

where In(?) is the offset in the model equation. When ¢ = 1, the offset In(#) = 0, which
can be omitted from the equation. For example, if the count response variable (Y) is
the number of visits to a zoo in a year in the model, then the mean count (w) is the
average number of visits to a zoo, and the time period (#) is 1. Therefore, the expected
number of visits to a zoo is the same as the incidence rate.
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8.1.1 The Poisson Distribution
The Poisson probability distribution for a count response variable is expressed as:

—u

e *u’

Py) = (8.5)

9!

where y is a count response variable, u is the expected or the average number of events,
and y! is the y factorial or the factorial of y. y! = y*(y—1) ... 2%1. In literature, p is
often symbolized as N. In the Poisson distribution, the mean of a count variable is equal
to the variance of the variable.

u = E(y) = Variance(y).

The log likelihood function for the Poisson distribution or the Poisson log likelihood
function is expressed as:

L(u; y) = ‘21 {}’ilnui U ln(}’i!)} (8.6)

where {u; y) is the log likelihood function of u given the values of the count variable y.

8.1.2 Incidence Rate Ratios in Poisson Regression Models

The Poisson regression model estimates the log expected counts of an event or the log
incidence rate of the response variable. The incidence rate is defined as the expected
number of events during a period of time or in a location. In a simple Poisson
regression model with one predictor, In (u) = a + BX, where w is the expected
counts of an event or the incidence rate. The estimated coefficient is the Poisson
coefficient, which is the coefficient on the scale of the natural logarithm. It can be also
referred to as the log coefficient. We estimate the relationship between the predictor
variable and the log function of the expected counts of an event or the log incidence
rate.

By exponentiating both sides of the equation, we get the expected counts of an event or
the incidence rate:

n = exp(a + BX) 8.7)
If the independent variable X is a categorical variable with the values of 0 and 1, the
incidence rates of the response variable can be computed as follows.
When X = 0, the incidence rate = exp(a), which is the exponentiated intercept.

When X = 1, the incidence rate = exp(a + B), which is the exponentiated sum of the
intercept and the Poisson coefficient.
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The incidence rate ratio of the group 1 (X = 1) to the group 2 (X = 0):

e exp(a+B) _ exp(a) Xexp(B) _ exp(B) (8.8)

exp(a) exp(a)

For a one-unit increase in an independent variable (e.g., from 0 to 1 in the previous
example) the change in the incidence rate is the incidence rate ratio, which is the
exponentiated Poisson coefficient. When the independent variable is continuous, for a
one-unit increase from any value of x to the value of (x + 1), the change in the
incidence rate is still the exponentiated Poisson coefficient.

8.1.3 Model Fit Statistics

Same as those discussed in the previous chapters, model fit statistics, such as the log
likelihood statistic, the residual deviance, the model chi-square statistic, the AIC and
BIC statistics, and the pseudo R? statistics, can be computed for the Poisson regression
model. The likelihood ratio test and the AIC and BIC statistics can also be used for
model comparisons.

8.1.4 Interpretation of Model Parameter Estimates

When the Poisson coefficient is positive, it indicates the relationship between the
predictor variable and the log expected counts of an event or the log incidence rate ratio
is positive. By exponentiating the log coefficient, we get the incidence rate ratio, which
is larger than 1. This means that the expected number of events or the incidence rate of
a response variable increases for a one-unit increase in the predictor variable.

When the Poisson coefficient is negative, it indicates that the relationship between the
predictor variable and the log expected counts of an event or the log incidence rate is
negative. The exponentiated coefficient, the incidence rate ratio, is less than 1. It means
that the expected number of events or the incidence rate of a response variable decreases
for a one-unit increase in the predictor variable.

When the Poisson coefficient equals 0, the incidence rate ratio equals 1. It indicates that
a one-unit increase in the predictor variable does not impact the expected number of
events or the incidence rate of a response variable.

When there are multiple predictors in the model, the incidence rate ratio for a predictor
can be interpreted as the change in the expected number of events or the incidence rate
of a response variable for a one-unit change in a predictor variable when holding other
predictor variables constant.

8.1.5 Interpreting an Incidence Rate Ratio as a Percentage
Change in an Incidence Rate

Another way of interpreting an incidence rate ratio is the percentage change in an
incidence rate. It can be calculated by using (Incidence rate — 1) X 100%. A positive
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percentage change in an incidence rate indicates there is an increase in the incidence
rate, whereas a negative percentage change corresponds to a decrease in the rate. A zero
percentage change indicates no change in the rate at all. In other words, the predictor
variable does not influence the incidence rate of a response variable.

For example, if an incidence rate ratio for a predictor variable equals 1.7, then the
percentage change in the incidence rate can be computed as follows: (1.7 — 1) X
100% = 70%. This indicates that each one-unit increase in the predictor variable
corresponds to an increase of 70% in the incidence rate of a response variable.

In another example, if an incidence rate ratio = .80, then the percentage change in the
incidence rate is (.80 — 1) X 100% = —20%. Since the percentage change is negative,
it indicates that for each one-unit increase in the predictor variable, there is a decrease of
20% in the incidence rate.

8.1.6 Interpreting Marginal Effects as Changes in
Predicted Counts

In Poisson regression, a marginal effect is a change in the expected counts of a response
variable related to the change in an independent variable. Mathematically, it is the
product of a Poisson coefficient for a particular predictor variable (8,) and the predicted
mean or the expected number of events (). Recall that in Equation 8.2 the predicted
mean is the exponential of the linear predictor, exp(a + B1X; + B2X; + ... + B,X,).
So a marginal effect = B, X u = B, X expla + B1X; + B2X; + ... + B,X)). It varies
across the values of a predictor variable. In other words, for each predictor variable, we
can calculate the marginal effect at each value of that variable. An average marginal
effect (AME) is the mean value of the marginal effects at these values.

8.2 RESEARCH EXAMPLE AND DESCRIPTION
OF THE DATA AND SAMPLE

We will investigate the relationships between the count response variable, the number
of zoo visits in a year, and four predictor variables. Unlike other chapters, however, here
the research interest focuses on using Poisson regression to predict the count response
variable. The GSS 2016 data are used for the following analyses. The following are the
variables used for data analysis in this chapter:

e vistzoo: the recoded variable of the number of zoo visits in a year

® maritals: the recoded variable of marital (marital status) with 1 = currently
married and 0 = not currently married

e educ: the highest education completed
e female: recoded variable of sex with 1 = female and 0 = male

e wrkfull: working full time or not
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8.3 FITTING A ONE-PREDICTOR POISSON
REGRESSION MODEL WITH R

8.3.1 Packages and Functions for Poisson Regression Models in R

Several packages in R can be used for fitting Poisson regression models. This chapter
focuses on the glm () function in R and the vglm() function in the VGAM package
(Yee, 2010). The glm () function can be used directly since it is included in the stats
package with the installation of R. However, you need to load the VGAM package with
library (VGAM) if it is installed. The glm () function is introduced first.

8.3.2 The glm() Function

As introduced in the earlier chapters, the glm() function is normally used to fit
generalized linear models. The model formula in g1m () specifies the dependent variable
and the predictor variable(s), which are separated by the tilde (~). The plus (+) symbol
is used to connect multiple predictor variables. We also need to specify the proba-
bility distribution of the outcome variable with the family argument. We specify
family = poisson for a count outcome variable in Poisson regression. For more
details on how to use this function, type help (glm) in the command prompt.

8.3.3 The Poisson Regression Model: One-Predictor Model

In the following example, the command PR.1 <- glm(vistzoo ~ educ,
family = poisson, data = count) tells R to predict the count outcome
variable vistzoo from the independent variable educ with Poisson regression by
specifying the Poisson family (family = poisson). The fitted model is named
PR.1. The summary (PR.1) command displays the output of the fitted model.

> # One-predictor Poisson regression model with glm()
> PR.1 <- glm(vistzoo ~ educ, family = poisson, data = count)
> summary (PR.1)

Call:
glm(formula = vistzoo ~ educ, family = poisson, data = count)

Deviance Residuals:

Min 1Q Median 3Q Max
-1.5545 -1.2289 -1.0389 0.3291 4.1534
Coefficients:
Estimate Std. Error z value Pr(>|z])
(Intercept) -1.15403 0.18915 -6.101 1.05e~09 **+*
educ 0.06716 0.01295 5.187 2.13e-07 ***

Signif. codes: 0 ‘***/ 0,001 ***’ 0.01 **/ 0.05 *.” 0.1 *' 1 |

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 1364.6 on 901 degrees of freedom

Residual deviance: 1337.6 on 900 degrees of freedom

AIC: 2342.6

Number of Fisher Scoring iterations: 5
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8.3.4 Interpreting the Output

In the R output for the one-predictor Poisson regression model, the first part is the call,
which shows the R command for the model. The second part shows the minimum, first
quarter, median, third quarter, and maximum values of the deviance residuals. The
third part shows the coefficients table including the parameter estimates for the pre-
dictor variable and the intercept, their standard errors, the Wald z statistics, and the
associated p values. The null hypothesis for the Wald test is that the coefficient of
the predictor variable is zero, and the alternative hypothesis is that the coefficient of the
predictor variable is significantly different from zero.

The Wald z statistic equals the parameter estimate divided by its standard error.

B
Wald z = __SE(B) (8.9)

where B is the estimated log coefficient and SE(B) is the standard error.

Confidence intervals for the parameter B = B * z*SE (B)

where B is the estimated log coefficient for a predictor, z is the z-score from a normal
distribution for the chosen confidence interval, and SE(B) is the standard error. For
the 95% confidence intervals, z = 1.96. So 95% confidence intervals for the parameter

B = B * 1.96+SE(B).

For the predictor variable educ, Wald z = 5.187. The associated p value, Pr (> |z )
< . 001, so we reject the null hypothesis. The rejection of the null hypothesis indicates
that the predictor variable educ is a significant predictor of the count response variable
vistzoo. For a one-unit increase in education the log expected number of visits to a
zoo increases by a factor of .067.

Finally, the fourth part of the output shows the fit statistics including the null deviance,
the residual deviance, and the AIC. The null deviance is the deviance for the null model
with the intercept only. The residual deviance is the deviance for the fitted model,
which is defined as —2(log likelihood of the current model — log likelihood of the
saturated model). The difference between the residual deviance and the null deviance
can be used to evaluate the significance of the fitted model.

We can extract the coefficients with coef (PR.1) and obtain the profiled confidence
intervals with the confint (PR.1) command. The Wald confidence intervals are
extracted with confint.default (PR.1). The profiled confidence intervals are
based on the profile likelihood while the Wald confidence intervals are based on the
Wald test. Although the results of both confidence intervals are similar in this example,
the former is preferred when the sample size is small.

315
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> coef (PR.1)

(Intercept) educ
-1.15403149 0.06715748

> confint (PR. 1)
Waiting for profiling to be done...

2.5% 97.5 %
(Intercept) -1.52744224 -0.78592700
educ 0.04178749 0.09254033

> confint.default (PR.1)
! 2.5% 97.5 %
| (Intercept) -1.52475464 -0.78330834
| educ 0.04178338 0.09253158

8.3.5 Interpreting the Incidence Rate Ratios in the
One-Predictor Poisson Regression Model

The Poisson regression model estimates the log expected counts of an event. Recall that
the exponentiated (8)) is the incidence rate ratio (IRR) for a one-unit change in a
predictor variable. In this model, the IRR for educ is 1.069, which indicates that for
a one-unit increase in education the incidence rate or the expected number of visits to a
zoo increases by a factor of 1.069. In other words, for a one-unit increase in education
the expected number of visits to a zoo increases by 6.9%.

The above results can be obtained using the exp (coef (PR.1)) command. We
also use the exp (confint (PR.1)) command to obtain the corresponding
confidence intervals. Both results are combined with the cbind (exp (PR.1) ),
exp (confint (PR.1))) command.

> exp (coef (PR.1))

(Intercept) educ

i 0.3153628 1.0694639

| > exp (confint (PR. 1))

|  Waiting for profiling to be done...

2.5% 97.5 %
(Intercept)  0.2170902  0.4556971
educ 1.0426729  1.0969574

> cbind (exp (coef (PR.1)), exp(confint (PR.1)) )
Waiting for profiling to be done...

2:.5% 97.5%
(Intercept) 0.3153628 0.2170902 0.4556971
educ 1.0694639 1.0426729 1.0969574
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The standard errors of IRRs can be obtained with exp (coef (PR.1)) *
sqrt(diag (vcov (PR.1))).

> exp (coef (PR.1) ) *sqgrt(diag(vcov(PR.1)))

(Intercept) educ
0.05965023 0.01384550

8.3.6 Model Fit Statistics
Testing the Overall Model Using the Likelihood Ratio Test

To test if the overall model is significant, we fit a null model with the intercept only
and compare the single-predictor model with the null model using the anova ()
function. The null model is fitted using the glm () function with 1 as the intercept
term in the model formula. The command and the output are displayed below.

> # Testing the overall model using the likelihood ratio test
|  >PR.0 <-glm(vistzoo ~ 1, family = poisson, data = count)
| > summary(PR.0)

| call:
glm(formula = vistzoo ~ 1, family = poisson, data = count)

Deviance Residuals:

Min 1Q Median 3Q Max
“=i.+:28.31 =il 27131, ~1,.2731 0.2031 3.6938
| Coefficients:
i Estimate Std. Error z value Pr(>|z])
(Intercept) -0.21020 0.03699 -5.683 1.32e-08 **x*

Signif. codes: 0 “***’ 0,001 ‘**/ 0,01 “*’ 0.05 ‘.’ 0.1 ‘'’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1364.6 on 901 degrees of freedom
Residual deviance: 1364.6 on 901 degrees of freedom
| AIC: 2367.6

Number of Fisher Scoring iterations: 6

The anova (PR.0, PR.1, test = "Chisq")) command compares the devi-
ance statistics of the fitted model PR. 1 and the null model PR. 0 using the likelihood
ratio test.
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> anova (PR.0, PR.1, test = "Chisq")
Analysis of Deviance Table

[ Model 1: vistzoo ~ 1
| Model 2: vistzoo ~ educ

Resid. Df Resid. Dev Df Deviance Pr (>Chi) :
1 901 1364.5 i
2 900 1337.6 1 26.935 2.104e-07 *** {

Signif. codes: 0 ‘***’ 0,001 ***’ 0.01 **’ 0.05 *." 0.1 *"1

Here we first fit the null model and then compare the single-predictor model with the
null model. This two-step process can also be simplified to the one-line command with
the update () function within the anova () function. In the anova (PR.1,
update (PR.1, ~1), test = "Chisq") command, we use update (PR.1,
~ 1) to fit the null model.

> anova (PR.1, update (PR.1, ~1), test = "Chisq")
Analysis of Deviance Table

Model 1: vistzoo ~ educ
Model 2: vistzoo ~ 1

Resid. Df Resid. Dev Df Deviance Pr (>Chi)
1 900 1337.6 i
2 901 1364.5 -1, -26.935 2.104e-07 ***

Signif. codes: 0 ‘***’ 0,001 ‘**’ 0,01 **’/ 0.05 *.” 0.1 ‘' 1

The null hypothesis of the test for the overall model is that the predictor variable does
not contribute to the model, and the alternative hypothesis is that the one-predictor
model is better than the null model with no independent variables. The likelihood ratio
test statistic LR X%l) = 26.935, p < .001, which indicates that the overall model with
one predictor educ is significantly different from zero. Therefore, the one-predictor
model provides a better fit than the null model in predicting the log number of visits to
a zoo in a year. The output displays a negative value for the likelihood ratio test statistic
since the residual deviance for the one-predictor model is smaller than that for the null
model.

Pseudo R?

We use the nagelkerke () function in the rcompanion package (Mangiafico, 2021)
to compute the pseudo R? statistics for the single-predictor model. We load the package
first with library (rcompanion) and then execute the nagelkerke (PR.1)
command.
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> # Pseudo R2 with nagelkerke ()
> library (rcompanion)

> nagelkerke (PR.1)

$ Models”

Model: "glm, vistzoo ~ educ, poisson, count"
Null: "glm, vistzoo ~ 1, poisson, count"

$Pseudo.R.squared.for.model.vs.null

Pseudo.R.squared

McFadden 0.0113862
Cox and Snell (ML) 0.0294198
Nagelkerke (Cragg and Uhler) 0.0317234

$Likelihood.ratio.test

Df.diEf LogLik.diff Chisq p.value
~-1 -13.467 26.935 2.1043e-07

$Number.of.observations

Model: 902
Null: 902

$Messages
[1] "Note: For models fit with REML, these statistics are based on refitting with ML"

$Warnings
[1] "None"

The McFadden R* is .011, the Cox and Snell R* is .029, and the Nagelkerke A2 is .032.
The same results can be computed using the equations for these three pseudo R?
statistics. In the R command below, LLM1 is the log-likelihood value for the single-
predictor model and LLO is the log-likelihood value for the null model. The number of
the observations is 902. In addition, McFaddenl is the object name for the
McFadden R?, CS1 for the Cox and Snell R, and NG1 for the Nagelkerke R2.

5 > # Pseudo R2 with equations

> LLM1 <- logLik (PR.1)

> LLO <- logLik (PR.0)

> McFaddenl <- 1-(LLM1/LLO0)

> McFaddenl

’log Lik.’ 0.01138621 (df=2)

> CS1 <- 1-exp (2* (LLO-LLM1) /902)
> Csl

’log Lik.’ 0.02941984 (df=1)

> NG1 <- CS1/(l-exp(2*LL0/902))
> NG1

’log Lik.’ 0.03172344 (df=1)
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AIC and BIC Statistics

The AIC and BIC statistics can also be computed from the AIC () and BIC()
functions. The output is shown as follows.

> # AIC and BIC Statistics
> AIC(PR.1) |
[1] 2342.636 |
> BIC(PR.1) i
[1] 2352.245

8.4 FITTING A MULTIPLE-PREDICTOR
POISSON REGRESSION MODEL WITH R

8.4.1 The Poisson Regression Model: Multiple-Predictor Model

We still use the g1m () function for multiple Poisson regression. The glm (vistzoo ~
educ + maritals + female + wrkfull, family = poisson, data =
count) command tells R to predict the count response variable vistzoo from the
four independent variables. In the glm () function, the model equation is specified as
vistzoo ~ educ + maritals + female + wrkfull. The family =
poisson argument specifies that the Poisson family is used to fit the model. The data
argument specifies data = count. The fitted model is named PR. 2. The output is
shown by the summary (PR.2) function.

> # Multiple-predictor Poisson regression model with glm()

> PR.2<-glm(vistzoo ~ educ + maritals + female + wrkfull, family = poisson,
data = count)

> summary (PR.2)

Call: |
glm(formula = vistzoo ~ educ + maritals + female + wrkfull, family = poisson, s
data = count) |

Deviance Residuals:

Min 1Q Median 3Q Max |
-1.7880 -1.1659 -0.9280 0.4835 4.4634 ;
Coefficients:

Estimate Std. Error z value Pr(>|zl) 3

(Intercept) -1.34993 0.20084 -6.721 1.80e-11 **x* i

educ 0.05086 0.01343 3787 0.000152 ***

| maritals 0.21382 0.07494 2.853 0.004328 ** ;

; female 0.04837 0.07535 0.642 0.520896 i
i wrkfull 0.53962 0.07792 6.925 4,35e-12 ***

J— |

Signif. codes: 0 “***/ 0,001 ‘**’ 0.01 **/ 0.05 *.” 0.1 "' 1 |

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1364.6 on 901 degrees of freedom
Residual deviance: 1275.8 on 897 degrees of freedom
AIC: 2286.8

Number of Fisher Scoring iterations: 6
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8.4.2 Interpreting R Output

In the R output for the multiple Poisson regression model, the first part is the call,
which shows the R command for the model. The second part shows the minimum, first
quarter, median, third quarter, and maximum values of the deviance residuals. The
third part shows the coefficients table including the parameter estimates for the four
predictor variables and the intercept, their standard errors, the Wald z statistics, and the
associated p values.

For the predictor variable educ, Wald z = 3.787. The associated p value, Pr (> |z )
< . 001, so we reject the null hypothesis. The rejection of the null hypothesis indicates
that the predictor variable educ is a significant predictor of the count response variable
vistzoo.

For the predictor variable maritals, Wald z = 2.853. The associated p value,
Pr(>|z|) < .001, so we reject the null hypothesis. For the predictor variable
wrkfull, Wald z = 6.925. The associated p value, Pr (>|z|) < .001, so we also
reject the null hypothesis. Therefore, maritals and wrkfull are significant pre-
dictors of the count response variable.

For the predictor variable female, the Wald z = .642. The associated p value
Pr(>|z|) = .521, so we fail to reject the null hypothesis and conclude that there is
no significant effect of female on the outcome variable. In other words, whether a
person is a female or male does not significantly predict the log expected number of
visits to a zoo.

Finally, the fourth part of the output shows the fit statistics including the null deviance,
the residual deviance, and the AIC.

We use the coef (PR.2) command to extract the coefficients. Then we use the
confint (PR.2) command to compute the corresponding confidence intervals.

> coef (PR.2)
(Intercept) educ maritals female wrkfull
-1.34992531 0.05085899 0.21382421 0.04837019 0.53962440

> confint (PR.2)
Waiting for profiling to be done...

2.5% 97.5 %
(Intercept) -1.74637649 -0.95905948
educ 0.02452348 0.07716665
maritals 0.06694611 0.36083727
female -0.09900149 0.19647922 |
wrkfull 0.38773418 0.69331480 s
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We request the IRRs with exp (coef (PR.2)) and exp (confint (PR.2)),
respectively. The results are combined with the cbind () function.

e e—————————

i > exp(coef (PR.2))

(Intercept) educ maritals female wrkfull
0.2592596 1.0521745 1.2384049 1.0495591 1.7153624
> exp (confint (PR.2))

Waiting for profiling to be done...

2.5% 97.5% !

| (Intercept) 0.1744048 0.3832532
educ 1.0248267 1.0802221
maritals 1.0692379 1.4345300
female 0.9057414 1.2171100
wrkfull 1.4736380 2.0003353

> cbind (exp (coef (PR.2)), exp (confint (PR.2)) )
Waiting for profiling to be done...

2.5% 97.5%
(Intercept) 0.2592596 0.1744048 0.3832532 |
educ 1.0521745 1.0248267 1.0802221 i
maritals 1.2384049 1.0692379 1.4345300
female 1.0495591 0.9057414 1.2171100
wrkfull 1.7153624 1.4736380 2.0003353

To compute the standard errors of the IRRs, we multiply the IRRs by the standard
errors of the Poisson coefficients with the exp (coef (PR.2)) *sgrt(diag
(vcov (PR.2))) command. In the syntax, exp (coef (PR.2)) exponentiates
the coefficients and sqrt (diag (vcov (PR.2))) computes the square root of the
variances of the coefficients which are the diagonal elements in the variance-covariance
matrix to obtain the standard errors of the coefficients.

> exp (coef (PR.2)) *sqrt (diag (vcov (PR.2)))

(Intercept) educ maritals female wrkfull {
0.05207020 0.01412980 0.09280886 0.07908132 0.13366331

8.4.3 Interpreting the Incidence Rate Ratios (IRRs) in the
Multiple-Predictor Poisson Model

The incidence rate ratio is the exponentiated coefficients in a Poisson regression model.
It is the ratio of two incidence rates. A positive Poisson regression coefficient corre-
sponds to an incidence rate ratio greater than 1, whereas a negative coefficient is
associated with an incidence rate ratio less than 1.

The incidence rate ratio for a predictor can be interpreted as the change in the inci-
dence rate or the number of events for a one-unit increase in the predictor variable
when holding other predictors constant.
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For educ, the incidence rate ratio is 1.052. The result indicates that the incidence rate
increases by a factor of 1.052 for a one-unit increase in education when holding all other
predictors constant. It can also be interpreted as the change in the number of events as
follows. The expected number of visits to a zoo increases by 1.052 for a one-unit increase
in education when holding all other predictors constant. In other words, for a one-unit
increase in education the expected number of visits to a zoo increases by 5.2%.

For maritals, the incidence rate ratio is 1.238, which indicates that expected
number of visits to a zoo for the married is 1.238 times as large as the expected number
of visits for the unmarried when holding the other predictors constant. In other words,
the expected number of visits to a zoo for the married is 23.8% higher than that for the
unmarried.

The incidence rate ratio for wrkfull can be interpreted in the similar way. The
incidence rate ratio is 1.715, which indicates that expected number of visits to a zoo for
those working full time is 1.715 times as large as that for those not working full time
when holding the other predictors constant. In other words, the expected number of
visits to a zoo for those working full time is 71.5% higher than that for those not
working full time.

With regard to female, the incidence rate ratio is 1.050, which is not significant (see
the associated  value in the coefficients table). It indicates that being female does not
impact the expected number of visits to a zoo.

8.4.4 Model Fit Statistics
Testing the Overall Model Using the Likelihood Ratio Test

To test if the overall model is significant, we compare the multiple-predictor model
with the null model using the anova () function. The anova (PR.0, PR.2,
test = "Chisq")) command compares the log-likelihood statistics of the fitted
model PR.2 and the null model PR. 0 using the likelihood ratio test. The resulting
output is displayed below.

r
> anova (PR.2, update (PR.2, ~1), test = "Chisq")
Analysis of Deviance Table

|
i
i
|
| Model 1: vistzoo ~ educ + maritals + female + wrkfull
i Model 2: vistzoo ~ 1

Resid. Df Resid. Dev Df Deviance Pr (>Chi)
- 897 1275.8
2 901 1364.5 -4 -88.772 < 2.2e-16 **%

Signif. codes: 0 ‘“***’/ 0,001 ‘**’/ 0,01 **’ 0.05'.” 0.1 vl

The same results can be obtained with the anova (PR.2, update (PR.2, ~ 1),
test = "Chisq")) command. In the command, we use update (PR. 2, ~1)
to fit the null model.
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> anova (PR.0, PR.2, test = "Chisqg")
Analysis of Deviance Table

Model 1: vistzoo ~ 1
Model 2: vistzoo ~ educ + maritals + female + wrkfull

Resid. Df Resid. Dev Df Deviance Pr (>Chi)
1 901 1364.5
2 897 1275.8 4 88.772 < 2.2e-16 ***

Signif. codes: 0 ‘***’ 0,001 ‘**’ 0.01 “*’ 0.05 *." 0.1 ‘"1

The likelihood ratio chi-square test X%4) = 88.772, p < .001 indicates that the full
model with the four predictors provides a better fit than the null model with no

independent variables in predicting the count response variable.

Pseudo R?

The nagelkerke (PR.2) command computes the three types of pseudo R* statistics

and the likelihood ratio test statistic for the overall multiple-predictor model.

> # Pseudo R2 with nagelkerke ()
> nagelkerke (PR.2)
$ Models"

Model: "glm, vistzoo ~ educ + maritals + female + wrkfull, poisson, count"”
Null: "glm, vistzoo ~ 1, poisson, count"

$Pseudo.R.squared. for.model.vs.null

Pseudo.R.squared

McFadden 0.0375265
Cox and Snell (ML) 0.0937285
Nagelkerke (Cragg and Uhler) 0.1010680

$Likelihood.ratio.test

Df.diff LogLik.diff Chisqg p.value
-4 -44.386 88.772 2.4012e-18

$Number.of.observations

Model: 902
Null: 902

$Messages
[1] "Note: For models fit with REML, these statistics are based on refitting with ML"

$Warnings
[1] "None"
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We can also compute the three types of pseudo R statistics with their equations for the
multiple-predictor model as follows.

> # Pseudo R2 with equations
i > LLM2 <- logLik (PR.2)
| > McFadden2 <- 1-(LLM2/LL0)
| > McFadden2
’log Lik.’ 0.03752648 (df=5)
> CS2 <- 1-exp (2* (LLO-LLM2) /902)
> CS2
’log Lik.’ 0.0937285 (df=1)
> NG2 <- CS2/ (1-exp (2*LL0/902))
> NG2
’log Lik.’ 0.1010675 (df=1)

In the output, LLM2 is the log-likelihood value for the multiple-predictor model and
LLO is the log-likelihood value for the null model. In addition, the number of the
observations is 902. The three types of pseudo R statistics are as follows. The
McFadden R? is .038, the Cox and Snell R* is .094, and the Nagelkerke R* is .101.

AIC and BIC Statistics

The AIC (PR.2) and BIC (PR.2) commands produce the AIC and BIC statistics.
We also use the AIC(PR.1, PR.2) and BIC(PR.1, PR.2) commands to
compare the AIC and BIC statistics between the two models, respectively.

> # AIC and BIC Statistics
i > AIC(PR.2)
i [1] 2286.799
| > BIC(PR.2)
{ [1] 2310.822
> AIC(PR.1, PR.2)
df ATC
PR.1 2 2342.636
PR.2 5 2286.799
> BIC(PR.1, PR.2)
df BIC
PR.1 2 2352.245
PR.2 5 2310.822

The AIC and BIC statistics for the multiple-predictor model are 2,286.799 and
2,310.822, respectively. Compared with the single-variable model, both AIC and BIC
indicate that the multiple-predictor model fits the data better.
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8.4.5 Interpreting the Marginal Effects in the Poisson
Regression Model

We load the margins package (Leeper, 2021) with the library (margins)
command, compute the average marginal effects with the margins (PR.2) com-
mand, and name the results marg.pr. The summary results are obtained with
summary (marg.pr) as follows.

P —

> # marginal effects

> library(margins)

> marg.pr <- margins (PR.2)
> summary (marg.pr)

factor AME SE 4 P lower upper

educ 0.0412 0.0110 3.7506 0.0002 0.0197 0.0628

i female 0.0392 0.0611 0.6418 0.5210 -0.0805 0.1589
% maritals 0.1733 0.0611 2.8374 0.0045 0.0536 0.2930
wrkfull 0.4373 0.0652 6.7087 0.0000 0.3096 0.5651

The average marginal effect for educ is .041. The result indicates that there are on
average .041 more visits to a zoo for a one-unit increase in education when holding all
other predictors constant.

The average marginal effect for maritals is .173. This indicates that the married
have on average .173 more visits to the zoo than the unmarried when holding the other
predictors constant. The marginal effects of the other two predictor variable can be
interpreted in a similar way.

8.4.6 Interpreting the Predicted Counts With the ggpredict ()
Function in the ggeffects Package

By using the ggpredict () function in the ggeffects package (Liidecke,
2018b), we can compute the predicted number of events of the count response variable
at specified values of the predictor variables. We first load the package with
library(ggeffects) since it has been installed in the previous chapters. The
command pr.ed <- ggpredict(PR.2, terms = "educ[12, 14, 16]")
tells R to compute the predicted counts of the response variable using the ggpredict ()
function. The argument inside the function includes the estimated model, PR.2, the
terms = "educ[12, 14, 16]" option, which specifies the predictor variable educ
at the values of 12, 14, and 16 when holding other predictor variables at their means. The
terms option can specify up to four variables, including the second to fourth grouping
variables. The output is assigned to the object named pr . ed. The as.data.frame ()
function or the sqrt (diag (vcov () )) function can be used to request the standard
errors. The output is omitted here.
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> library(ggeffects)

> pr.ed <- ggpredict (PR.2, terms = "educ[12, 14, 16]")
> pr.ed

# Predicted counts of vistzoo

educ | Predicted | 95% CI
12 | 0.70 | [0.63, 0.77]
14 | 0.77 | [0.71, 0.83]
16 | 0.85 | [0.78, 0.93]

Adjusted for:
* maritals = 0.44
* female = 0.56
* wrkfull = 0.47
> plot (pr.ed)

The results table displays the values of educ, the predicted counts, and the confidence
intervals. When educ = 12, and the other predictor variables are held at their means
(maritals = .44, female = .56, and wrkfull = .47), the predicted number of
visits to a zoo is .70.

When educ = 14, and the other three predictor variables are held at their
means, the predicted number of visits to a zoo is .77.

When educ = 16, and the other predictor variables are held at their means, the
predicted number of visits to a zoo is .85.

The predicted counts are plotted using plot (pr.ed). Figure 8.1 shows the pre-
dicted number of visits to a zoo when educ is at the values of 12, 14, and 16.

The graph shows that with the increase of the years of education, the predicted number
of visits to a zoo increases. In other words, people with higher levels of education are
associated with having more visits to a zoo.

In the next example, we compute the predicted counts for a continuous variable at
given values by different groups. In the following example, we compute the predicted
number of visits to a zoo for educ at the values of 12, 14, and 16 by the two groups
in wrkfull when holding other variables at their means. The command is as fol-
lows: pr.ew <- ggpredict (PR.2, terms = c("educ[12, 14, 16]",
"wrkfull"™) ). In the ggpredict () function, the terms = c ("educ[12,
14, 16]", "wrkfull") option specifies both educ and wrkfull, with the
latter as the grouping variable. The output is assigned to an object named pr . ew and
is plotted with the plot (pr.ew) function.
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FIGURE 8.1 @ Predicted Counts for educ at 12, 14, and

Predicted counts of vistzoo

0.9

0.7}

educ

> pr.ew <- ggpredict (PR.2, terms = c("educ[12, 14, 161", "wrkfull"))
> pr.ew
# Predicted counts of vistzoo

# wrkfull =0

educ | Predicted | 95% CI
12 | 0.54 [0.47, 0.61]
14 | 0.60 [0.53, 0.67]
16 | 0.66 [0.58, 0.75]

# wrkfull =1

educ | Predicted 95% CI
12 | 0.92 [0.82, 1.04]
14 | 302 [0.93, 1.12]
16 | 1.713; [1.02, 1.25]

Adjusted for:
* maritals = 0.44
f: female = 0.56
> plot(pr.ew)
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FIGURE 82 @ Predicted Counts for educ at 12, 14, and 16 by maritals
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Figure 8.2 shows the predicted counts for educ at 12, 14, and 16 by the grouping variable
wrkfull. As shown in the graph, the predicted number of visits to a zoo increases
with the increase of years of education and the predicted counts for the people who
work full-time are higher than the predicted counts for those not working full-time.

8.4.7 Model Comparisons Using the Likelihood Ratio Test

The likelihood ratio test, or the deviance difference test, is used to compare the multiple-
predictor model and the one-predictor model. In the anova (PR.1, PR.2, test =
"Chisqg") command, PR.1 and PR.2 are the two models being compared. The
following output is displayed.

> # Model comparison with the likelihood ratio test
> anova (PR.1, PR.2, test = "Chisq")
Analysis of Deviance Table

Model 1: vistzoo ~ educ
Model 2: vistzoo ~ educ + maritals + female + wrkfull

Resid. Df Resid. Dev Df Deviance Pr (>Chi)
1 900 1337.6
2 897 127548 3 61.837 2.381le-13 ***

Signif, codes: Q Yx¥%r 0,001 “Y**¢ 0,01 “*F 0.08 Y%7 0.1 271

The likelihood ratio test, Xﬁa) = 61.837, p < .001, which indicates that the full model
with the four predictor variables fits the data better than the single-predictor model.

329



330

Categorical Data Analysis and Multilevel Modeling Using R

8.5 POISSON REGRESSION WITH THE vglm ()
FUNCTION IN THE vGaM PACKAGE

We can also use the vglm () function in the VGAM package to fit Poisson regression
models. Since VGAM has been installed for the previous chapters, you just need to load the
package by typing 1ibrary (VGAM) . The syntax for Poisson regression models is similar
to that for other models using the vglm () function. The poissonff family needs to
be specified for the family argument. For example, the command vglm(y ~ x,
family = poissonff, data = datal) tells R to fit a Poisson regression model
predicting the dependent variable y with an independent variable x. The argument
family = poissonff tells R that it is the Poisson family. For more details on how to
use this function, type help (poissonff) in the command prompt after loading the

VGAM package.

In the following example, the pr.v <- vglm(vistzoo ~ educ + maritals +
female + wrkfull, family = poissonff, data = count) command tells
R to predict the count response variable vistzoo from the four independent variables.
In the model formula for the vglm () function, the dependent variable vistzoo and
the four predictor variables are separated by the tilde (~). The four predictor variables
include, educ, maritals, female, and wrkfull which are connected by plus (+)
symbols. We also specify the data arguments data = count. The fitted model is named
pr.v. The following output is shown by the summary (pr.v) command.

> # Multiple-predictor Poisson regression model with vglm() in VGAM

> library (VGAM)

Loading required package: stats4

Loading required package: splines

> pr.v <- vglm(vistzoo ~ educ + maritals + female + wrkfull, family = poissonff,
data=count)

> summary (pr.v)

Qalils
vglm(formula = vistzoo ~ educ + maritals + female + wrkfull,
family = poissonff, data = count)

Pearson residuals:

Min 10 Median 30 Max

g loglink (lambda) -1.264 -0.8244 -0.6562 0.5319 8.247
Coefficients:

Estimate Std. Error z value Pr(>|zl)

(Intercept) -1.34993 0.20084 -6.721 1.80e-11 ***
educ 0.05086 0.01343 3.787 0.000152 ***
maritals 0.21382 0.07494 2.853 0.004328 **

. female 0.04837 0.07535 0.642 0.520896

| wrkfull 0.53962 0.07792 6.925 4,35e-12 ***
Signif. codes: 0 “***’ 0,001 ***/ 0.01 ‘*’ 0.05 *.” 0.1 ¥t a

Name of linear predictor: loglink (lambda)



Chapter 8 m Poisson Regression Models

Residual deviance: 1275.779 on 897 degrees of freedom

Log-likelihood: -1138.399 on 897 degrees of freedom

Number of Fisher scoring iterations: 6

No Hauck-Donner effect found in any of the estimates

The R output produced by the vglm () function for the Poisson regression model is
similar to that by the glm () function. It includes the call of the model command, the
Pearson residuals, the coefficients, the name of linear predictor, the residual deviance,
the log-likelihood, and the number of Fisher scoring iterations.

The first section shows the call, which is the R command for the model. The second
section shows the minimum, first quarter, median, third quarter, and maximum values
of the Pearson residuals. The third section shows the coefficients table including the
parameter estimates for the predictor variable and the intercept, their standard errors,
the Wald z statistics, and the associated p values. The fourth section shows the name of
linear predictor or the link function, which is the log link for the expected count. The
fifth section shows the residual deviance and the degrees of freedom. The sixth section
provides the log-likelihood value and the degrees of freedom. Finally, the number of
Fisher scoring iterations is displayed at the end.

The Poisson coefficients in the coefficients section (labeled Coefficients:) are the
same as those produced from the glm () function. See the preceding section on the
interpretation of the coefficients.

The Poisson coefficients of the predictor variables can be extracted by using
coef (pr.v, matrix = TRUE). The confidence intervals are obtained with the
confint (pr.v, matrix = TRUE) command.

} > coef (pr.v, matrix = TRUE)
% loglink (lambda)
(Intercept) -1.34992531
educ 0.05085899
maritals 0.21382421
female 0.04837019
wrkfull 0.53962440
> confint (pr.v, matrix = TRUE)
| 2.5% 97.5%
{  (Intercept) -1.74356822 -0.95628240
educ 0.02453836 0.07717963
maritals 0.06694009 0.36070834 i
female -0.09930758 0.19604796
wrkfull 0.38690141 0.69234738
|

We use the exp (coef (pr.v, matrix = TRUE)) and exp (confint (pr.v,
matrix = TRUE)) commands to compute the IRRs and the corresponding confi-
dence intervals, respectively. Both results are combined with the cbind () function.
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> exp (coef (pr.v, matrix = TRUE))
loglink (lambda)
(Intercept) 0.2592596
educ 1.0521745
maritals 1.2384049
female 1.0495591
wrkfull 1.7153624
> exp (confint (pr.v, matrix = TRUE))
2 .5% 97::5%
(Intercept) 0.1748952 0.384319
educ 1.0248419 1.080236
maritals 1.0692314 1.434345
female 0.9054642 1.216585
wrkfull 1.4724113 1.998401
> cbind (exp (coef (pr.v, matrix = TRUE)), exp (confint (pr.v, matrix = TRUE)))
loglink (lambda) 2.5% 97.5 %
(Intercept) 0.2592596 0.1748952 0.384319
educ 1.0521745 1.0248419 1.080236
maritals 1.2384049 1.0692314 1.434345
female 1.0495591 0.9054642 1.216585
wrkfull 1.7153624 1.4724113 1.998401

The standard errors of the IRRs are computed with the exp (coef (pr.v))*
sqgrt (diag(vcov (pr.v))) command.

> exp (coef (pr.v) ) *sqgrt (diag (vcov (pr.v)))

(Intercept) educ maritals female wrkfull
0.05207020 0.01412980 0.09280886 0.07908133 0.13366331

We use the nagelkerke (pr.v) command to compute the three types of pseudo
R? statistics and the likelihood ratio test statistic for the multiple-predictor model.

> # Pseudo R2 with nagelkerke ()
> library (rcompanion)

> nagelkerke (pr.v)

$ Models®

Model: "vglm, vistzoo ~ educ + maritals + female + wrkfull, poissonff, count"
Null: "vglm, vistzoo ~ 1, poissonff, count"

$Pseudo.R.squared. for.model.vs.null

Pseudo.R.squared

McFadden 0.0375265
Cox and Snell (ML) 0.0937285
Nagelkerke (Cragg and Uhler) 0.1010680

$Likelihood.ratio.test

Df.diff LogLik.diff Chisqg p.value
4 -44.386 88.772 2.4012e-18
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$Number.of.observations

Model: 902
Null: 902

i  $Messages
! [1] "Note: For models fit with REML, these statistics are based on refitting with ML"

:  $Warnings
| [1] "None"

8.6 MAKING PUBLICATION-QUALITY TABLES

8.6.1 Presenting the Results Using the stargazer Package

We can use the stargazer package (Hlavac, 2018) to make a table containing the
results of the fitted models with the glm () function. Since the package has been
installed in the preceding chapters, we only need to load the package by typing
library (stargazer). After fitting the single-predictor model PR.1 and the
multiple-predictor model PR. 2, we use the command as follows: stargazer (PR.1,
PR.2, type = "text", align = TRUE, out = "pr2mod.txt"). In the
stargazer () function, we first specify the two model objects to be presented and
then the type of the table. The option type = "text" specifies the table type and the
align = TRUE option aligns the results of the two models. The out =
"pr2mod. txt" argument saves the output named pr2mod. txt.

| > library(stargazer)

| > stargazer(PR.1l, PR.2, type = "text", align = TRUE, out = "pr2mod.txt")

] e et R e e

{ Dependent variable:

vistzoo

! (1) (2)

i educ 0.067*** 0.051%**

(0.013) (0.013)

| maritals 0-214xx%

(0.075)

| female 0.048

(0.075)

| wrkfull 0.540%**

(0.078)

| Constant ~1.154%%* ~1.350%** !

(0.189) (0.201)

brigalbos o oo s o dered Loeadiiedt e mh b

i Observations 902 902

i Log Likelihood -1,169.318 -1,138.400 |
Akaike Inf. Crit. 2,342.636 2,286.799 |

.1; **p<0.05; *EXp<L0..01
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TABLE 81 @ Results of the Poisson Regression Models: Single-Predictor
and Multiple-Predictor Models (Shown in Original Format Generated by R)

Dependent variable:

vistzoo

educ 0.067 0.051°"
(0.013) (0.013)
maritals o | 0.214™
o (0.075)
female 0.048
(0.075)
wekill 0540
- _ (0.078]
Constant 1156 AL oa0e
(0.189) (0.201)
Observations 902 ghp
Log Likelihood —-1,169.318 —1,138.400
Akaike Inf. Crit.  2‘,342;§35 o
*» < .1
*¥pi<.05
***p < 01

We can also create the table in the HTML format and copy it into Microsoft Word.
The command is as follows: stargazer (PR.1, PR.2, type = "html",
align = TRUE, out = "pr2mod.htm"). It produces Table 8.1, as shown here
in its original format, presenting the results of both the single-predictor and the
multiple-predictor Poisson regression models.

Presenting the Results of the vglm Models Using the texreg Package

We can also use the screenreg () and htmlreg () functions from the texreg
package (Leifeld, 2013) to present the results. If you have not done so, you need to
install the package first by typing install.packages (“texreg”) and then
load the package by typing 1ibrary (texreg). Since the package has been installed in
previous chapters, we only need to load the package by typing 1ibrary (texreg). We
use the: screenreg (list (PR.1, PR.2)) command to display the results. In the
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screenreg () function, we specify the two model objects to be presented with the
list () function. The output for the resulting plain text table is omitted here.

8.7 REPORTING THE RESULTS

Reporting the results for Poisson regression is similar to that used for binary logistic
regression. The following are the generic guidelines for reporting the results. You may need
to adjust your writing since your discipline or journals may have different requirements.

First, describe the Poisson regression model, the count response variable and the
independent variables, and your research hypothesis or the purpose of your study.
Include a couple of sentences justifying your use of this model for the analysis.

Second, report the likelihood ratio test statistic for the model and the associated p value,
followed by the interpretation on whether the fitted model is better than the null
model. If more than one model is developed, then compare models using likelihood
ratio test statistics and/or the AIC and BIC statistics.

Third, report the parameter estimates for the predictor variables, their standard errors,
and the associated p values in a table. In addition, report the incidence rate ratio for
each predictor in the table or text and interpret the results. The following is an example
of summarizing the results for the Poisson regression model illustrated previously.

The Poisson regression analysis was conducted to predict the count outcome
variable, the number of zoo visits in a year, from a set of predictor variables,
such as marital status, years of education, gender, and working status. The
Poisson regression model was fitted since the response variable was a count
of the number of visits to a zoo in a year.

The likelihood ratio test for the fitted model sz.) = 88.772, p < .001,
indicates that the full model with the four predictors provides a better fit than
the null model with no independent variables in predicting the count
response variable.
| Table 8.1 displays the parameter estimates for the multiple-predictor
| Poisson regression model. The results can be interpreted in terms of the
incidence rate ratios which are the exponentiated coefficients.

For educ, the incidence rate ratio is 1.052. The result indicates that the
incidence rate increases by a factor of 1.052 for a one-unit increase in
education when holding all other predictors constant.

For maritals, the incidence rate ratio is 1.238, which indicates that
expected number of visits to a zoo for the married is 1.238 times as large as
the expected number of visits for the unmarried when holding other
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predictors constant. In other words, the expected number of visits to a zoo
for the married is 23.8% higher than that for the unmarried.

The incidence rate ratio for wrkfull can be interpreted in the similar
way. The incidence rate ratio is 1.715, which indicates that the expected
number of visits to a zoo for those working full time is 71.5% higher than that
for those not working full time.

With regard to female, the incidence rate ratio is 1.050, p = .521, which
is not significant. It indicates that being female does not impact the expected
number of visits to a zoo.

8.8 SUMMARY OF R COMMANDS IN
THIS CHAPTER

# Chap 8 R Script

# Remove all objects
rm(list = 1s(all = TRUE))

# The following user—-written packages need to be installed first by using
install.packages (* ”) and then by loading it with library()

# library (VGAM) # It is already installed for Chapter 4
# library (rcompanion) # It is already installed for Chapter 3
# library(margins) # It is already installed for Chapter 3
# library(ggeffects) # It is already installed for Chapter 2
# library(stargazer) # It is already installed for Chapter 2

# Import the count dataset
library(foreign)
count <- read.dta("C:/CDA/count.dta")

# Convert variables from integer to numeric so they will work well with ggpredict()
count$educ <- as.numeric (count$educ)

count$wrkfull <- as.numeric (count$wrkfull)

count$maritals <- as.numeric (count$maritals)

attach (count)

# One-predictor Poisson regression model with glm()

PR.1 <- glm(vistzoo ~ educ, family = poisson, data = count)
summary (PR.1)

coef (PR.1)

confint (PR.1)

confint.default (PR.1)

exp (coef (PR.1))
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exp (coef (PR.1)) *sqgrt (diag (vcov (PR.1)))
exp (confint (PR.1))
cbind (exp (coef (PR.1)), exp (confint (PR.1)))

# Testing the overall model using the likelihood ratio test
PR.0 <- glm(vistzoo ~ 1, family = poisson, data = count)
summary (PR.0)

anova (PR.0, PR.1, test = "Chisq")

anova (PR.1, update (PR.1, ~1), test = "Chisq")

# Pseudo R2 with nagelkerke ()
library (rcompanion)
nagelkerke (PR.1)

# Pseudo R2 with equations

LLM1 <- logLik(PR.1)

LLO <- logLik (PR.0)

McFaddenl <- 1-(LLM1/LLO)
McFaddenl

CS1 <- 1-exp (2* (LLO-LLM1) /902)
Ccsl

NG1 <- CS1/ (l-exp(2*LL0/902))
NG1

# AIC and BIC Statistics
AIC(PR.1)
BIC(PR.1)

# Multiple-predictor Poisson regression model with glm()

PR.2 <-glm(vistzoo ~ educ + maritals + female + wrkfull, family = poisson, data = count)
summary (PR.2)

coef (PR.2)

confint (PR.2)

exp (coef (PR.2))

exp (confint (PR.2))

cbind (exp (coef (PR.2)), exp (confint (PR.2)) )

exp (coef (PR.2)) *sqgrt (diag(vcov(PR.2)))

# Testing the overall model using the likelihood ratio test
anova (PR.2, update (PR.2, ~1), test = "Chisqg")
anova (PR.0, PR.2, test = "Chisqg")

# Pseudo R2 with nagelkerke ()
nagelkerke (PR.2)

# Pseudo R2 with equations

LLM2 <- logLik (PR.2)

McFadden2 <- 1-(LLM2/LL0)
McFadden2

CS2 <- 1-exp (2* (LLO-LLM2) /902)
CS2

NG2 <- CS2/ (1l-exp (2*LL0/902))
NG2
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# AIC and BIC Statistics
AIC(PR.2)

BIC(PR.2)

AIC(PR.1, PR.2)
BIC(PR.1, PR.2)

# Model comparison with the likelihood ratio test
anova (PR.1, PR.2, test = "Chisg")

library(stargazer)
stargazer (PR.1, PR.2, type = "text", align = TRUE, out = "pr2mod. txt")
stargazer (PR.1, PR.2, type = "html", align = TRUE, out = "pr2mod.htm")

# Marginal effects: AME
library(margins)
marg.pr <- margins (PR.2)
summary (marg.pr)

# Predicted counts with ggpredict() in ggeffects
library(ggeffects)

pr.ed <- ggpredict (PR.2, terms = "educ([12, 14, 16]1")

pr.ed

plot(pr.ed)

pr.ew <- ggpredict (PR.2, terms = c("educ[12, 14, 16]", "wrkfull"))
pr.ew

plot (pr.ew)

# Multiple-predictor Poisson regression model with vglm() in VGAM
library (VGAM)

pr.v <- vglm(vistzoo ~ educ + maritals + female + wrkfull, family = poissonff,
data=count)

summary (pr.v)

coef (pr.v, matrix = TRUE)

confint (pr.v, matrix = TRUE)

exp (coef (pr.v, matrix = TRUE))

exp (confint (pr.v, matrix = TRUE))

cbind (exp (coef (pr.v, matrix = TRUE)), exp (confint (pr.v, matrix = TRUE)))
exp (coef (pr.v)) *sqgrt (diag (vcov (pr.v)))

# Pseudo R2 with nagelkerke ()
library (rcompanion)
nagelkerke (pr.v)

detach (count)




Glossary

A marginal effect in Poisson regression is a change in the expected counts of a response variable
related to the change in an independent variable.

Count response variables are nonnegative integers and follow a Poisson distribution.

In the Poisson distribution, the mean of a count variable is equal to the variance of the variable.
The incidence rate is defined as the expected number of events during a period of time or in a location.

The Poisson regression model is used to estimate a count response variable. It estimates the log
expected counts of an event or the log incidence rate of the response variable.

Exercises

Use the rwm1984 data (Hilbe, 2014) available at https://edge.sagepub.com/liu1e for the following
problems.

1. Conduct an analysis for a Poisson regression model and estimate the count response variable
docvis (the number of visits to a doctor in a year) from the two predictor variables, outwork
(1 = not working and 0 = working) and female (1 = female and 0 = male).

Interpret the likelihood ratio test for the overall model.
List three measures of pseudo R? and the AIC and BIC statistics.

In the regression table, identify the coefficients for the predictor variable outwork and female. Are
they both statistically significant?

Compute the IRRs and interpret the IRR for the predictor variable outwork.
Make a publication-quality table containing the estimated coefficients.

. Write a report to summarize the results from the output.




