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68 INTRODUCTION TO MODERN MODELLING METHODS 

Structural equation modelling (SEM) refers to a family of techniques, including 
(but not limited to) path analysis, confirmatory factor analysis (CFA), structural 
regression models, autoregressive models and latent change models (Marcoulides & 
Schumacker, 2001; Raykov & Marcoulides, 2000). SEM utilises the analysis of cosran-
ances to examine the complex interrelationships within a system of variaWes. 
builds upon, integrates and greatly expands the capabilities of more traditional statis­
tical techniques such as multiple linear regression and ANOVA (Hoyle, 2012). 

This chapter provides a conceptual introduction to SEM. We describe the advan­
tages of SEM, outline the assumptions and requirements for SEM, define key terms 
and concepts and provide brief, non-technical introductions to path analysis and 
latent variables. In Chapter 5, we delve into more detail, and we discuss spedBca-
tion, identification and estimation in SEM. In addition, we discuss Wright's rules 
and systems of equations. In Chapter 6, we discuss model building and provide an 
example where we fit and estimate a hybrid model. 

Advantages of SEM 

SEM is extremely versatile; it places very few restrictions on the kinds of models that 
can be tested (Hoyle, 1995, 2012). Consequently, SEM allows researchers to test a 
wider variety of hypotheses than would be possible with most traditional statisti­
cal techniques (Kline, 2015). Using SEM to specify a given model based on theory, 
researchers can examine the degree to which the model can reproduce the relation­
ships among observed variables (and patterns of means). Alternatively, researchers 
can test competing theories by fitting alternative models to determine which of the 
competing models appears to best fit the observed data (Kline, 2015). 

SEM allows researchers to distinguish between observed and latent variables and to 
explicitly model both types of variables. Latent variable models have both conceptual 
and statistical advantages over traditional observed variable techniques. Using latent 
variables, researchers can include latent constructs in their analyses. A construct 
is a concept, model or schematic idea (Bollen, 2002). Thus, latent constructs are non-
observable concepts, such as cognitive ability, self-concept or optimism. Although 
latent constructs themselves are not directly observed, their presence and influence 
can be inferred based on variables that are directly observed. For example, educa­
tors use observable indicators such as test scores, self-reports, teacher ratings and/ 
or behavioural observations to infer latent constructs such as students' academic 
engagement. Latent variable models permit a level of methodological and theoretical 
freedom that is nearly impossible in most other statistical analyses. 

Furthermore, using latent variables in SEM accounts for potential errors of measure­
ment, allowing researchers to explicitly account for (and model) measurement error 
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(Raykov & Marcoulides, 2000). The ability to separate measurement error or 'error vari­
ance' frcMTi 'true variance' is one of the reasons that SEM provides such powerful analyses. 
In multiple regression, measurement error within a predictor variable attenuates the 
regression wei^t from the predictor variable to the dependent variable, downwardly 
biasing the parameter estimates (Baron & Kenny, 1986; Campbell & Kenny, 1999; 
Cole & Preacher, 2014). Structural equation models that include latent variables use 
multiple indicators to estimate the effects of latent variables. This approach corrects 
for the unreliability within the measured predictor variables, providing more accurate 
estimates of the effects of the predictor on the criterion. 

Measurement error in the mediator (or other variables in the mediational model) can 
also produce biased estimates of direct, indirect and total effects (Baron & Kenny, 1986; 
Cole & Preacher, 2014). Cole and Preacher (2014) outline four serious consequences of 
ignoring measurement error in mediational analyses: (1) measurement error can cause 
path coefficients to be either over- or underestimated (and predicting the direction of bias 
becomes quite difficult as the complexity of the model inaeases), (2) measurement error 
can deaease the power to detect incorrect models, (3) even seemingly small amounts 
of measurement error can make valid models appear invalid and (4) differential meas­
urement error across the model can actually change substantive conclusions. Generally, 
these four issues become increasingly problematic as model complexity increases 
(p. 300). Fortunately, using latent variables as the structural variables in mediational 
models eliminates these issues; using latent variables in SEM accounts for the measure­
ment error and produces unbiased estimates of the direct, indirect and total effects. 

Finally, SEM allows researchers to specify a priori models and to assess the degree 
to which the data fits the specified model. SEM provides a comprehensive statistical 
approach to test existing hypotheses about relations among observed and latent vari­
ables (Hoyle, 1995). In this way, SEM forces the researcher to think critically about 
the relationships among the variables of interest and the hypotheses being tested. 
Further, SEM allows researchers to test competing theoretical models to determine 
which model best reproduces the observed variance-covariance matrix. 

SEM analyses can include means as well as covariances. In fact, researchers can 
also use SEM techniques to model latent means. Thus, SEM provides a framework 
for examining between-group differences: multiple group SEM (MG-SEM) enables 
between-group comparisons of any model parameters, including latent means. 
Therefore, MG-SEM facilitates the examination of both differences in patterns of 
interrelationships among variables across groups and differences in means and var­
iances aaoss groups. Latent growth curve models also incorporate means into the 
structural equation model (Bollen & Curran, 2004; Duncan et al., 1999; Grimm et al., 
2016). For the remainder of this section (Chapters 4-6), we confine our discussion to 
modelling covariance structures without means. Chapter 7 introduces means struc­
ture analysis in the context of latent growth curve models to study change across time. 
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Assumptions and requirements of SEM 

SEM is a regression-based technique. As such, it rests upon four key assumptions and 
requirements necessary for any regression-based analyses: normality, linearity, inde­
pendence and adequate variabiUty. We briefly discuss each of these requirements bekjw--. 

Normality. Many of the assumptions of SEM parallel those of multiple linear regression. 
Namely, SEM assumes that the variables of interest are drawn from a multivariate 
normal population (Hancock & Mueller. 2006; Kaplan, 2000). ML estimation 
performs optimally when the data Is continuous and normally distributed (Finney & 
DiStefano, 2006; Kaplan, 2000). Generally, SEM is fairly robust to small violations 
of the normality assumption; however, extreme non-normality can cause problems. 
(For more information about dealing with non-normal data, see Curran et al., 1996, 
Finney & DiStefano, 2006; Hayakawa. 2019; S. G. West et al., 1995.) 
Linearity. As in multiple regression, SEM assumes that the variables of interest are 
linearly related to each other. In addition, we can examine non-linear and interaction 
effects using SEM. Interested readers should consult Maslowsky et al. (2015) for a 
comprehensible introduction to modelling interaction effects in SEM. 
Sampling. ML estimation assumes that the data represents a simple random sample 
from the population. Chapter 1 of this book discussed the pitfalls of assuming 
that data are independent. Multilevel modelling provides a solution to issue of 
non-independence. Multilevel SEM combines multilevel modelling and SEM 
techniques to analyse data that have been collected using multistage or cluster 
sampling techniques (Kaplan, 2000). However, we need to walk before we run, so 
our introduction to SEM assumes that data are Independent. Space precludes us from 
discussing multilevel SEM in this book. For more information about multilevel SEM, 
we recommend Bauer et al. (2006), Heck and Thomas (2000,2015), Hox et al. (2017), 
Muth6n and Muth^n (1998-2017), Preacher, Zhang et al. (2011, 2016) and Preacher, 
Zyphur et al. (2010). 

^mple Size. Because standard SEM uses ML estimation to minimise the discrepancy 
observed covariance matrix and the model-implied covariance matrix, 

is a large sample technique. (For information about alternative estimation 
methods, see Kaplan, 2000, or Hoyle, 1995.) There are no definitive rules for a 
m n mum sample size, but the literature provides general rules of thumb. Under most 

to use SEM techniques (Kline, 
, umac er & Lomax, 1996). Latent variable models generally require larger 

sample sizes than comparable path models (that include only observed variables). 
camnhf"umbcrs of freely estimated parameters require larger 
thp ^ ^ number of cases to the number of parameters declines, 

become more unstable (Kline, 2015). Kline (2015) 
In manv instanr f ^ estimated parameter, 

m^r 200 or more are sufficient for estimating structural 
"3om ̂  ^^tributed and obtained 
from a random sample of subjects. Sample sizes of 250 to 500 are typical in SEM 
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studies (Kline, 2015). In summary, SEM generally requires large samples; however, 
the minimum sample size ultimately depends on the size and complexity of the 
stmctural equation model. 
Range of values. Because SEM is essentially a correlational technique, anything 
that affects the magnitudes of the covariances among the variabies in the model 
impacts the SEM analysis. For example, restriction of range in one variable 
attenuates the covariance between that variable and any other variables in the 
model. Similarly, a small number of influential outliers can have a large impact on 
the variance-covariance matrix. Such issues are likely to lead to biased parameter 
estimates. 

Understanding SEM 

The basic building block of any structural equation model is the variance-covariance 
matrix. (Means are also required for some analyses such as growth curve analysis 
and MG-SEM, but to lay the groundwork of SEM, we begin with traditional covari­
ance structure analysis.) SEM provides a way to use the covariance matrix to explain 
complex patterns of interrelationships among variables. In fact, the covariance 
matrix is the sufficient statistic for standard structural equation model: it con­
tains all the information needed to fit a standard SEM analysis. We can compute the 
covariance matrix using the correlation matrix and the standard deviations for each 
variable. Because it is possible to create and analyse a structural equation model 
without the raw data file, interested researchers can conduct SEM using a published 
covariance or correlation matrix.' The covariance matrix is the unstandardised ver­
sion of the correlation matrix; therefore, it is simple to create the covariance matrix 
using standard deviations and correlations. As we delve into what might seem to be 
a complex barrage of symbols, jargon and numbers, remember that the covariance 
matrix is at the heart of SEM. 

SEM's versatility stems from the fact that it incorporates path analysis (or simulta­
neous equation modelling) and factor analysis (or latent variable modelling) into one 
modelling framework. We begin our tour of SEM by providing a brief definition and 
overview of path analysis and factor analysis. In the chapters that follow, we dem­
onstrate how path analysis and factor analysis can be combined into a single latent 
variable modelling framework. 

Technically, it Is considered proper form to analyse a covariance matrix, but under a variety of 
conditions, analysing a correlation matrix will produce the same results, as a correlation matrix is 
simply a standardised version of a covariance matrix. 
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What is path analysis? 

More than 100 years ago. Sewall Wright (1920, 1923) developed path analysis, 
a technique that allows for the estimation of a system of simultaneous equations 
(Bollen, 1989). In traditional statistical analyses such as regression, a variable can 
serve as either an independent variable or a dependent variable; however, the same 
variable cannot serve as both a predictor and an outcome simultaneously (Hoyle, 
2012). Mediators are a classic example of variables that serve as both independent 
and dependent variables, and mediational models cannot be estimated in a single 
multiple regression analysis. In contrast, in path analysis, a single variable can act as 
both an independent variable and a dependent variable. Therefore, path models can 
specify a complex system of predictive pathways among a large number of variables. 

Path diagrams 

Path diagrams, visual displays of structural equations, are perhaps the most intui­
tive way to conceptualise the process of developing and testing a specified model. 
Most predictive models can be represented as path models. Exhibit 4.1 provides a 
summary of the typical symbols in a path diagram. 

Exhibit 4.1 Symbols in a path diagram 

Observed variables Paths (direct effects) 

Latent variables o Covariances or correlations 

Note. The double-headed arrow represents a covariance in the unstandardised solution and a 
correlation in the standardised solution. 

An observed (or manifest) variable is a variable that is actually measured. For exam­
ple, a student s score on a test or a subscale is an observed variable. In a path diagram, 
rectangles indicate observed or measured variables. In contrast, circles or ellipses rep-
resent latent variables, which are not directly observed in the sample (data). Straight 
single-headed arrows represent paths. Just as in multiple regression, these paths rep­
resent the degree to which the predictor variable predicts a given outcome variable 
after controlling for (or holding constant) the other variables that also contain direct 
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paths to (arrows pointing to) the dependent variable. In fact, we can construct a path 
diagram to display any multiple regression model. Double-headed arrows, which are 
generally curved, indicate a simple bivariate correlation between two variables. 

Figure 4.1 illustrates a simple three-variable mediation model as a path diagram. 
The three observed variables are growth mindset, academic persistence and academic 
achievement. Straight single-headed arrows, called paths, connect growth mindset -* 
academic persistence, academic persistence academic achievement and growth 
mindset academic achievement. The direction of the arrowhead is important; the 
arrow points from the predictor variable to the outcome variable. 

Academic 
Persistence 

Growth Academic 
Mindset Achievement 

Figure 4.1 A path model in which growth mindset predicts academic persistence, which 
in turn predicts academic achievement 

Just as in regression, path coefficients in SEM can be unstandardised or standard­
ised. Unstandardised path coefficients depict the expected unit of change in 
the dependent variable given a one-unit change In the predictor variable, holding the 
other variables in the model constant. Unstandardised path coefficients or parameters 
reflect the scales of measurement of both the independent and dependent variables. 
Therefore, the interpretation of unstandardised path coefficients depends on the 
scales of both the predictor and criterion variables. In contrast, standardised path 
coefficients are analogous to beta coefficients in regression; conceptually they rep­
resent path coefficients in a model where all variables are standardised (i.e. z scores 
with mean = 0 and standard deviation/variance = 1). 

Each of the parameters has an associated standard error, and we can test the sta­
tistical significance of every parameter that we estimate. As in multiple regression, 
each unstandardised path coefficient is divided by its standard error to compute 
a critical ratio. If the absolute value of this ratio is greater than or equal to 1.96, 
the path is statistically significant (at a = .05). If the ratio of the unstandardised 
path coefficient to its standard error is less than 1.96, the path is considered non-
statistically significant. 
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For example, the path from growth mindset academic achievement indicates that 
growth mindset predicts academic achievement. Because both growth mindset and aca­
demic persistence predict academic achievement, the growth mindset acadennc 
achievement path rqnesents the direct effect of growth mindset -* academic achievement, 
after controlling for academic persistence. Similarly, the academic persistence 
academic achievement path represents the direct effect of academic persistence academic 
achievement, after controlling for growth mindset. Only growth mindset predicts 
academic persistence; therefore, the path from growth mindset academic persistence 
does not control for any other variables. 

The latent variables, and in Figure 4.1 represent disturbance variances. We pre­
dict the outcome variable, V, with one or more predictors, X. The total variance in the 
outcome variable can be partitioned into the variance in Y that is explained by the 
predictor(s) and the variance in Y that Is unexplained by the predictors. In multiple 
regression, we often refer to the unexplained variance as residual or error variance. In 
path analyses, this residual is called the disturbance, and the disturbance variance 
is the variance in the outcome variable that is unexplained by the model. 

Exogenous and endogenous variables 

SEM makes a key distinction between exogenous variables and endogenous 
variables. Exogenous variables predict other variables, but they are not predicted by 
any other variables in the model. In our simple example, growth mindset is an exogenous 
variable; it is purely a predictor variable. Exogenous variables may be (and generally 
are) correlated with any other exogenous variables, and they predict one or more 
variables in the model. However, we assume the causes of exogenous variables (or variables 
that explain the variance in the exogenous variables) lay outside the model. 

In contrast, endogenous variables are predicted by one or more variables in the 
model. Just as in regression, every endogenous variable in the model contains a 
residual (called a disturbance), representing the unexplained variance in the vari­
able. Therefore, the total variance in academic persistence ecjuals the variance that is 
explained by growth mindset plus the disturbance (unexplained) variance. In path 
analysis, endogenous variables can also predict other endogenous variables. In other 
words, a variable can be a predictor only (exogenous), a predictor and an outcome 
(endogenous) or an outcome only (endogenous). In our simple model, both academic 
persistence (which is a mediator) and academic achievement (which is an outcome 
only) are endogenous variables. 

Walking through our simple conceptual example in Figure 4.1 Ulustiates how the 
same variable can be both a predictor and an outcome. (This example assumes all vari­
ables are observed.) Academic persistence predicts subsequent academic achievement. 
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Students who are more persistent tend to have higher academic achievement. Academic 
persistence is the predictor and academic achievement is the outcome. However, growth 
mindset predicts academic persistence (Dweck et al., 2014). Here, growth mindset is the 
predictor and academic persistence is the outcome variable. Growth mindset predicts 
academic persistence, which in turn predicts academic achievement. Thus, academic 
persistence is both an outcome variable and a predictor: academic persistence is 
predicted by growth mindset and a predictor of academic achievement. 

Estimating direct, indirect and total effects in path models 
with mediation 

Path analysis provides a method for estimating the direct, irtdirect and total effects of a 
system of variables in which there are mediator (intermediate) variables (Bollen, 1989). 
A mediator is a 'middle man', an intervening variable that explains the relationship 
between a predictor variable and a dependent variable (Baron & Kenny, 1986). 

X 
c y X 

(Total effect of X on V) 
y 

Figure 4.2 A simple mediatlonal model 

Direct effects 

A direct etfect represents the independent contribution of a predictor variable (X) 
on an outcome variable iX), after controlling for all of the other variables that also 
predict Y (and share variance with X). In our simple example, growth mindset is X, 
academic persistence (which is both a predictor and an outcome) is M and academic 
achievement (which is only an outcome) is Y. In multiple regression, the partial 
regression coefficient is a direct effect: it is the eff^ of X on Y, after controlling 
for all the predictor variables in the model. In our model above, the direct effect of 
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growth mindset on academic achievement is the effect of growth mindset on aca­
demic achievement, after controlling for academic persistence. If this direct effect 
is 0, then growth mindset does not predict academic achievement after controlling 
for the effects of academic persistence on academic achievement. In other words, 
any variance in academic achievement that is explained by growth mindset is also 
explained by academic persistence. Therefore, once we control for academic persis­
tence, growth mindset does not predict any additional variance in academic achieve­
ment. If there is a direct effect of growth mindset on academic achievement, then 
growth mindset explains additional variance in academic achievement, over and 
above the amount that is explained by academic persistence. This direct effect is just 
like a partial regression coefficient in a multiple regression equation. In fact, if we ran 
a multiple regression with academic persistence and growth mindset as predictors of 
academic achievement, the partial regression coefficient for growth mindset would 
be identical to the direct effect from the path analysis. 

Indirect effects 

An indirect effect refers to the effect of a predictor variable (X) on an outcome 
variable (F) that is mediated by one or more intervening variables (M) (Raykov & 
Marcoulides, 2000). In other words, the indirect effect is the effect of the predic­
tor variable on the outcome variable that 'passes through' one or more intervening 
variables. Growth mindset (X) predicts academic persistence (M), which in turn pre­
dicts academic achievement (V). The indirect effect of growth mindset on academic 
achievement is the effect of growth mindset on academic achievement that is also 
shared with academic persistence. Models with indirect effects are often referred to 
as mediational models. In our example, academic persistence is a mediator variable: 
it is an intermediate variable that explains how growth mindset influences academic 
achievement (Baron & Kenny, 1986). Figure 4.2 illustrates a simple mediational 
model with an indirect effect of X on y via M. The coefficient for path from X to M is 
a and the coefficient for the path from M to y is b. The product of the two paths 
(fl * b) provides an estimate of the indirect effect. 

Indirect effects do not exist in standard multiple regression models (in which vari­
ables are either predictors or outcomes, but not both), but they do exist in path 
analysis (and SEM). Recursive path models can be estimated using multiple regression 
analyses in a traditional OLS framework. However, using multiple regression to esti­
mate the indirect effect requires estimating two separate regression models. The first 
model regresses Y on X. The second model regresses y on M and X. The indirect effect 
of X on y (via M) is the effect of X on y (the total effect) - the effect of X on K after 

c c ( controlling for M (the direct effect). Because the Total effect = Direct effect + Indirect 
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effect, the indirect effect of X on V via M Is the difference in those two coefficients. 
When we refer to path analysis and SEM, we are referring to single-step methods for 
estimating these models. When we refer to 'standard multiple regression analysis', we 
are referring to the process of running a single multiple regression model. 

Total effect 

The total effect of a predictor variable (X) on an outcome variable (V) is the effect of 
X on Y, whether or not it is mediated by a third variable, M. There are two ways to 
compute the total effect. The first is quite simple: the simple linear regression of Y on 
X produces the total effect of Y on X. The second method to compute the total effect 
is to sum the direct and indirect effects. In other words, the total effect of X on Y is 
the sum of the direct effect of X on T and the indirect effect of X on K that is mediated 
by the intermediate variable, M. In the top panel of Figure 4.2, the total effect is c, 
the regression coefficient for the model that regresses T on X but does not include M. 
Alternatively, in the bottom panel of Figure 4.2, we can compute the total effect by 
summing the direct effect (c') and the indirect effect (a * b). 

Mediation and bootstrapping 

Although the parameter estimates for direct, indirect and total effects are easy to 
estimate for mediational models, correctly determining whether the indirect effect is 
statistically significantly different from 0 requires additional analytic attention. The 
indirect effect (a * b) is multiplicative. Even if the sampling distribution of both a 
and b are normally distributed, the sampling distribution of the a * b product is 
not necessarily normally distributed. Therefore, using the analytic standard error to 
determine the statistical significance of the a * b path may result in incorrect sta­
tistical inferences. Instead of trying to derive the standard error analytically, it is 
easy to bootstrap the sampling distribution around the a * b path. Bootstrapping is 
a resampling technique used to empirically derive the sampling distribution when 
an analytic solution is not feasible. Treating the sample (of size n) as the population, 
bootstrapping involves drawing repeated samples with replacement. The parameter 
estimates vary across samples. The variance of the parameter estimates provides an 
empirical estimate of the sampling variance; the standard deviation of the parameter 
estimates is an empirically derived standard error. However, because we believe that 
the sampling distribution of the indirect effect is not likely to be normal, we eschew 
standard errors and p-values (which assume that the distribution is normally distrib­
uted) in favour of empirically derived confidence intervals (CIs). To determine the 
90% CI, we locate the 5th and 95th percentiles of the sampling distribution: those ? 



78 INTRODUCTION TO MODERN MODELLING METHODS 

values become the upper and lower limits of our CI. For additional information about 
bootstrapping in SEM, we recommend Shrout and Bolger (2002), Preacher and Hays 
(2008) and MacKinnon and Fairchild (2009). Interestingly, recent research suggests 
that many of the bootstrap approaches have inflated Type I error rates (Yzerbyt et al., 
2018). Therefore, Yzerbyt et al. (2018) suggest first examining the statistical signifi­
cance of each of the paths separately. If both paths are statistically significant, then 
examine the magnitude and CI of the indirect effect using bootstrapping (Yzerbyt 
et al., 2018). Thus, in their approach, the tests of the individual components evalu­
ate the statistical significance of the indirect effect whereas 'the confidence interval 
reveals its magnitude' (Yzerbyt et al., 2018, p. 942). 

Mediation and causality 

Mediation implies the existence of an underlying causal mechanism: the effect of a 
putative cause is transmitted through the mediator to the outcome variable (Mayer 
et al., 2014). However, since the advent of path analysis, controversy has surrounded 
the technique's causal aspirations (Wright, 1923). Recently, a great deal of methodo­
logical work has focused on whether and how researchers can make strong causal 
inferences from mediational models (Preacher, 2015; VanderWeele, 2015). Mediation 
analysis requires several f^rly strong assumptions to attribute a causal interpretation 
to the indirect eff^: (a) there are no omitted variables (confounders), (b) there is no 
measurement error in the predictor variable or mediators, (c) the functional form 
of the model is conect and (4) we have correctly modelled temporal precedence and 
the timing of measurement allows us to capture the mediation process (MacKinnon, 
2(X)8; MacKinnon et al., 2020). Because the term mediation implies an underlying causal 
mechanism, some researchers avoid using the term entirely, and instead refer only to 
the direct, indirect and total effects within path analytic (or structural equation) models 
with intermediate variables. To interpret estimates of direct and indirect effects causally 
does require fairly strong assumptions (VanderWeele, 2015). However, we choose to use 
the term mediation to descnbe models in which the effect of one variable is presumed to 
be transmitted through an intermediate variable to an outcome variable of interest, even 
when we fail to meet the strict assumptions of causal inference. We encourage our readers 
to read Volume 10 of this series, which is devoted to the topic of causal inference. 

What are latent variables? 

SEM is often referred to as a latent variable modelling technique (Hoyle, 2012). What 
are latent variables? The term latent means 'not directly observable'. Utent variables 
appear in a model but are not directly measured. We often teach our students a crude 
(but effective) mle of thumb for identifying whether a variable is latent or not If the 
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variable appears in the data file, it is observed. If the variable does not, it is latent. 
Bollen (2002) defines latent variables as variables for which there are no values (for 
at least some observations) in a given sample. Often, we use latent variables to model 
the hypothetically existing constructs of interest in a study that we cannot directly 
measure, such as peace, intelligence and apathy. However, not all latent variables are 
latent constructs. Bollen's definition of latent variables is broader and more Inclusive 
than the definition of a latent construct. According to Bollen (2002), residuals (e.g. 
errors or measurement and disturbances) are also technically latent variables: they 
are not directly observed in a given sample. However, they are generally not latent 
constructs of substantive interest. We use the term latent construct to indicate a latent 
variable of substantive interest that assumes theoretical importance in a latent vari­
able model. We use the term latent variable more broadly: a latent variable may be a 
latent constmct of substantive interest, but it need not be. See Bollen (2002) for a far 
more nuanced discussion of the ways to define latent variables. 

Measuring/modelling latent constructs 

So, how can we model constructs that we cannot directly measure? In SEM, the 
existence of latent constructs is inferred or derived from the relationships among 
observed variables that measure the latent construct. To model latent constructs using 
reflective" latent variables, we make two philosophical assumptions. First, we assume 
that the constructs are real, even if they cannot be directly measured (Borsboom, 
2005; Borsboom et al., 2003; Cook & Campbell, 1979; Edwards & Bagozzi, 2000; 
Nunnally & Bernstein, 1994). Second, we assume that a latent construct has a causal 
relationship with its indicators (the observed variables that measure the construct of 
interest; Borsboom et al., 2003). In other words, the latent construct influences peo­
ple's responses to the observed variables (or indicators; McCoach, Gable et al., 2013). 
Figure 4.3 illustrates this assumption. The circle represents the latent construct, the 
squares represent the observed variables that serve as indicators of the latent con­
struct and the single-headed arrows represent the directional paths from the latent 
variable to the indicators. We can decompose the variance of each indicator into 
two parts: the variance that is explained by the latent construct and measurement 
error variance (Rhemtulla et al., 2020). This figure also illustrates one other implicit 
assumption of a standard, unidimensional factor model: we assume the correlations 
among the indicators are completely explained by the variance they share with the 

"You can also measure latent variables with formative or causal indicators. For a discussion of 
this approach, see BoUen and Diamantopoulos (2017) or Bollen and Bauldry (2011). However, in 
this book, we consider only latent variables with reflective Indicators, which is by far the more 
common type of latent variable In the literature. 
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latent construct. In other words, we assume any covariances among the set of items 
are due to the latent construct. 

Latent 
Factor 

O © 
Figure 4.3 A simple unidlmensional factor model 

Factor analysis 

To what extent do certain latent constructs explain the pattern of correlations/ 
covariances in the observed variables? The goal of factor analysis is to determine 
the number of distinct constructs needed to account for the pattern of correlations 
among a set of measures (Fabrigar & Wegener, 2012). Factor analysis exploits the 
patterns of correlations among observed variables to make inferences about the 
existence and structure of latent constructs. Factor analysis provides information 
about which observed variables are most related to a given factor, as well as how 
these items relate to the other factors in the solution (Gorsuch, 1997). 

Conceptually, standard factor analytic techniques assume that the correlations 
(covariances) among the observed variables can be explained by the factor structure. 
In other words, variance in the observed scores can be broken into two pieces: 
(1) variance that can be explained by the factor and (2) error variance (or unique­
ness), which is the variance that is unique to the observed score and is not explained 
by the latent factor. Factors are the latent constructs of substantive interest that 
predict shared variance in the observed variables. Factor analysis yields estimates of 
the strength of the paths (measurement weights) from the latent factors to the indi­
cators, the unique variance in each observed variable (the variant not explained by 
the factor) and the correlations among the latent variables of interest. 
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Types of factor analysis: exploratory and confirmatory 
factor analyses 

The two most common factor analytic techniques are exploratory factor analysis (EFA) 
and confirmatory factor analysis (CFA). Researchers commonly use EFA to reduce the 
number of elements from a larger number of observed variables to a smaller num­
ber of broader, more generalisable latent constructs (McCoach, Gable et al., 2013). 
Mathematically, EFA 'seeks the set of equations that maximise the multiple correlations 
of the factors to the items' (Gorsuch, 1997, p. 533). 

One of the major methodological differences between EFA and CFA is the amount 
of information about the factor structure that is specified a priori. The factor structure 
represents the linkage between factors and indicators (i.e. which observed variables 
indicate which factor(s), how many factors are present in the data, etc.). EFA does 
not require a priori knowledge or specification of the factor structure. In contrast, in 
standard CFA, the researcher completely specifies the factor structure before under­
taking the analysis. Based upon previous literature and experience, researchers clearly 
articulate the patterns of results they expect to find and then investigate whether and 
how well the data conform to the hypothesised structure. 

CFA permits comparison of several rival models, allows researchers to reject speci­
fied models and provides a method to compare several competing models empiri­
cally. CFA has many advantages over EFA. These include (a) the ability to yield unique 
factorial solutions, (b) clearly defining a testable model, (c) assessments of the extent 
to which a hypothesised model fits the data, (d) information about how individual 
model parameters affect model fit, (e) the ability to test factorial invariance across 
groups (Marsh, 1987) and (0 the ability to compare and evaluate competing theoreti­
cal models empirically. Standard SEM techniques make extensive use of CFA in the 
development of the latent variables (i.e. measurement models). For the remainder of 
this book, we focus exclusively on CFA. 

Measurement models versus structural models 

In SEM, measurement models and structural models are conceptually distinct 
(Anderson & Gerbing, 1982, 1988). As previously mentioned, latent constructs 
represent theoretical constructs of interest that cannot be directly measured but 
that influence scores on the observed variables. To measure such latent constructs, 
we use multiple observed variables called indicators. The measurement model speci­
fies the causal relations between the observed variables and the underlying latent 
variables (Anderson & Gerbing, 1982, 1988). The most common measurement 
model in SEM is a CFA model. For example, the unidimensional factor model in 
Figure 4.3 is also an example of a measurement model for a single latent construct. 
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In the standard conceptualisation of a measurement model, the only directional 
pathways are from latent variables to observed variables. Therefore, the latent con­
structs are exogenous variables. Generally, in SEM, all exogenous variables correlate 
with each other. In other words, the latent variables correlate with one another, 
but they do not predict one another. 

The structural model is often the model of greatest interest: it specifies the 
causal or predictive pathways among the conceptual variables of interest. In such 
cases, the main purpose of the measurement model is to measure the theoretical 
constructs of interest both more completely and more accurately, using multiple 
indicators. Multiple indicators enable us to separate the 'true' variance of the latent 
variable from the measurement error that is inherent in each observed variable. The 
latent variables are measured without error, so the latent variable model generates 
unbiased estimates of the structural paths among the conceptual variables of interest. 
In Figure 4.4, we have reformulated our mediation model (from Figure 4.1) so 
growth mindset is no longer an observed variable; it is now a latent variable. The 
model now contains a latent variable for growth mindset as well as the overall 
structural model in which growth mindset predicts academic persistence, which in 
turn predicts academic achievement. 

Growth 
Mindset 

Academic 
Persistence 

Academic 
Achievement 

Figure 4.4 A structural mode! in which growth j -.L . 
predicts acadenrric persistence, which in turn predicts academic achieTlenr"' ' 
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Misspecified measurement models can lead to errors of inference in the structural 
part of the model. Therefore, the measurement model must be correctly specified 
and exhibit adequate fit prior to estimating the structural parameters (Anderson & 
Gerbing, 1982). We return to this point in Chapter 6, when we describe the model 
building process in SEM. 

Disturbances and measurement errors 

Generally, we refer to residuals for structural endogenous variables as disturbances 
and residuals for endogenous measurement variables as measurement errors. The dis­
turbance variance represents the sum of all other causes of the endogenous structural 
variable that are not explicitly specified in the structural model. Similarly, error vari­
ance in the measurement model represents the sum of all other causes of the indica­
tor variable that are not explained by the latent construct (factor). Note the difference 
between the use of d's in Figure 4.1 and e's in Figure 4.3. In either case, the total vari­
ance of any endogenous variable can be partitioned into two pieces: (1) the variance 
that is explained by its predictor variables and (2) the variance that is unexplained by 
the predictor variables. As in multiple regression, the proportion of explained variance 
in an endogenous variable is R}. Therefore, the proportion of unexplained variance in 
an endogenous variable is 1 - R^. 

Given that the latent variable has no inherent scale of its own, factor analytic 
results most commonly report the standardised path coefficients for a path from the 
latent variable to the indicator. These standardised path coefficients are also referred 
to as measurement weights/pattern coefficients, or factor loadings in CFA. In 
Figure 4.3, each of the pattern coefficients estimates the direct effect of the factor on 
the indicator variable. 

The R} for a unidimensional indicator is simply the square of the standardised 
factor loading, and R^ represents the proportion of variance in the indicator that is 
explained by the factor. For multidimensional indicators (where two or more factors 
predict a given indicator), we still can partition the variance in the indicator into the 
portion that is explained by the latent constructs and the portion that is unexplained 
by the latent constructs. The proportion of variance unexplained by a factor 
(or factors) is the measurement error variance for the indicator divided by the total 
variance of the indicator: 

1 _ ^ - McasMremCTit Error Variance (4.1) 
Total Variance 

For example, suppose the total variance for an indicator is 100, and in a CFA measure-
ment model, the error variance of that indicator is 20. The proportion of unexplained ddc 
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variance is 20/100 or .20. The for that indicator is 1 - proportion of unexplained 
variance, so s 1 - .20 or .80. 

Estimation 

The goal of estimation in SEM is to find the model parameter estimates that maximise 
the probabiiity of observing the data. Finding parameter values for an overidentified 
model is iterative. The computer program repeatedly refines the parameter estimates 
to minumse the discrepancy between the model-implied variance-covariance matrix 
and the variance-covariance matrix (Brown, 2015). The ML estimates of the param­
eters minimise the discrepancy between the variance-covariance matrix and the 
model-implied variance-covariance matrix. 'ML aims to find the parameter values that 
make the data most likely' (Brown, 2015, p. 63). The structural equation model has 
converged when a unique set of parameter estimates minimise the difference between 
the model-implied and sample variance-covariance matrices. {Note: We find a unique 
set of parameter estimates for our specified model. However, that does not mean that 
our specified model is the only model to fit the data equally well!) 

Model fit and hypothesis testing in SEM 

In SEM, we fit our theoretical model to a variance-covariance matrix. The popula­
tion covariance matrix represents bivariate relationships between the observed vari­
ables. The model parameters maximise the likelihood of obtaining the data, given 
the specified model. The estimated model parameters can then be used to generate 
the covariance matrix that is implied by the model. Ideally, the parameters in our 
model should be able to generate a model-implied covariance matrix that reproduces 
the population covariance matrix. The model-implied variance-covariance matrix 
provides important information about model-data fit. The more closely the parame­
ters reproduce the covariance matrix, the better the 'fit' of the model. The fundamen­
tal statistical hypothesis undergirding SEM is I = 1(0). This null hypothesis states 
that the model-implied variance-<ovariance matrix is exactly equal to the population 
variance-covariance matrix. Here, Z is the population covariance matrix, B contains 
the set of parameters or system of equations and Z(0) is the model-implied covari­
ance matrix (Paxton et al., 2011). The global fit function (F) measures the degree of 
discrepancy between the model-implied variance-covariance matrix and the actual 
variance-covariance matrix. The global fit function {F) tells us nothing about the pre­
dictive utility of the model. Instead, it is a function of the degree to which the model 
parameters are able to reproduce the covariance matrix. 
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How do we know if our model fits the data? Hypothesis testing In SEM departs 
from traditional tests of significance. In most statistical analyses, researchers test the 
null hypothesis that there is no relationship among a set of variables or that there 
are no statistically significant differences among a set of variables. Generally speak­
ing, we want to reject the null hypothesis and conclude that there are statistically 
significant relationships or differences. In SEM, for the global test of model fit, the 
logic is reversed. We test the null hypothesis that the specified model exactly repro­
duces the population covariance matrix of observed variables (Bollen & Long, 1993). 
Assuming the data satisfy distributional assumptions (normality, etc.), the product 
of the asymptotic distribution of the fit function and the sample size minus 1 (f * (N -1)) 
is asymptotically distributed as chi-square (;j^), with degrees of freedom equal to the 
degrees of freedom of the model. To evaluate exact global model fit, we compare 
the of the specified model to the critical value for Under the null hypothesis, 
the population covariance of observed variables equals the model-implied covariance 
matrix. Therefore, when the model exceeds the critical value of we reject the 
null hypothesis. Rejecting means the specified model does not adequately repro­
duce the covariance matrix, indicating less than perfect model fit. 

However, this approach poses several problems. First, is very sensitive to sample 
size. The larger the sample size, the more likely we are to reject the null hypothesis 
that the model fits the data. The test rejects almost any model with a very large 
sample size if there is even a miniscule amount of model-data misfit. To correct for 
this problem, some researchers divide the model degrees of freedom. Ideally, the 
X^tdf ratio should be less than 2. This does not really solve the problem though, as the 
degrees of freedom are related to model complexity and size, rather than sample size. 

As mentioned earlier, ML estimation requires large sample sizes. This aeates an 
obvious tension: we need large sample sizes in SEM, but large sample sizes provide 
high power to reject the null hypothesis that the model fits the data exactly. Because 
we hope to fail to reject the null hypothesis, having large sample sizes actually works 
against us. 

Second, the test is a test of exact (perfect fit). 'A perfect fit may be an inappro­
priate standard, and a high may indicate what we already know - that holds 
approximately, not perfectly' (Bollen, 1989, p. 268). Knowing that the model-implied 
covariance matrix does not exactly fit the population covariance matrix provides 
no information about the degree to which the model does or does not fit the data. 
Scientific inquiry generally rewards parsimony and simplicity. Generally, models 
are simplifications of reality. In some sense, the goal of a model is to capture the 
essence of a system without completely recreating it. Therefore, it should come as no 
surprise that model-implied covariance matrices generally fail to exactly reproduce 
population covariance matrices. 
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Alternative measures of model fit 

Because is notoriously sensitive to sample size and the test of model fit tends to 
be rejected with large sample sizes in SEM, SEM researchers have developed a variety 
of alternative global model fit measures to evaluate model-data fit (or misfit). The 
various alternative fit indices attempt to correct the problems that result from judg­
ing the fit of a model solely by examining 

There are two basic types of fit indices: (1) absolute fit indices and (2) incre­
mental fit indices. Absolute fit indices evaluate the degree to which the specified 
model reproduces the sample data. Some of the more commonly used absolute 
fit indices include the root mean square error of approximation (RMSEA) and the 
standardised root mean square residual (SRMR). One of the most popular fit indi­
ces, the RMSEA, is a function of the degrees of freedom in the model, the of 
the model and the sample size. Unlike the the value of the RMSEA should not 
be influenced by the sample size (Raykov & Marcoulides, 2(XX)). In addition, it is 
possible to compute a CI for the RMSEA. The width of the CI indicates the degree 
of uncertainty in the estimate in the RMSEA (Kenny et al., 2014). The SRMR repre­
sents a standardised summary measure of the model-implied covariance residuals. 
Covariance residuals are the differences between the observed covariances and the 
model-implied covariances (Kline, 1998). 'As the average discrepancy between the 
observed and the predicted covariances increases, so does the value of the SRMR' 
(Kline, 1998, p. 129). The RMSEA and the SRMR approach 0 as the fit of the model 
nears perfection. Hu and Rentier (1999) suggest that SRMR values of approximately 
.08 or below, and values of approximately .06 or below for the RMSEA indicate 
relatively good model fit. 

Incremental fit indices measure the proportionate amount of improvement in 
fit when the specified model is compared with a nested baseline model (Hu & 
Rentier, 1999). Some of the most commonly used incremental fit indices include 
the non-normed fit index (NNFI), also known as the Tucker-Lewis Index (TLI) and 
the comparative fit index (CFI). Roth indices approach 1.00 as the model-data fit 
improves, and the TLI can actually be greater than 1.00. Generally speaking, TLI 
and CFI values at or above .95 indicate relatively good fit between the hypothe­
sised model and the data (Hu & Rentier, 1995,1999) whereas values below .90 gen­
erally indicate less than satisfactory model fit. Many factors such as sample size, 
model complexity and the number of indicators can affect fit indices differentially 
(Gribbons & Hocevar, 1998; Kenny & McCoach, 2003; Kenny et al., 2014); there­
fore, it is best to examine more than one measure of fit when evaluating structural 
equation model. However, the vast array of fit indices can be overwhelming, so 
most researchers focus on and report only a few. We generally report x\ RMSEA 
the SRMR, the CFI and the TLI. 
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Model comparison 

Chi-Square difference test 
The difference test compares the model fit of two hierarchically nested models. 
Two models are hierarchical (or nested) models if one model is a subset of the other. 
For example, if a path is removed or added between two variables, the two models are 
hierarchical (or nested) models (Kline, 2015). However, models that simultaneously 
ftee one or more parameters while constraining one or more previously freed parameters 
are not nested. For the difference test, we subtract the of the more complex 
model (xl) from the of fh® simpler mode! (Xt). We then subtract the degrees of 
freedom of the more complex model (dQ from the degrees of freedom for the more 
parsimonious mode! (df,). We compare this x^ difference (xf - Xz)^o the critical value 
of x^ with df^ - df^ degrees of freedom. If this value is greater than the critical value of 

with d/j - d/j degrees of freedom, we conclude that deleting the paths in question 
has statistically significantly worsened the fit of the model. If the value of Xi ~X2 
is less than the critical value of x^ with df^ - df^ degrees of freedom, then we con­
clude that deleting the paths has not statistically significantly worsened the fit of 
the model. When deleting paths does not worsen the fit of the model, we choose 
the more parsimonious model (the one that has fewer paths and more degrees of 
freedom) as the better model. The x^ difference test can only be used to compare hier­
archically related models. If observed variables are added or removed from the model 
(i.e. if the observed variance-covariance matrix changes), the models are not hierar­
chical models. It is inappropriate to use the difference test to compare models that 
have different numbers of variables or different sample sizes. 

Because sample size affects sample size also affects the difference test. Small dif­
ferences between the observed and model-implied variance-covariance matrices can pro­
duce a large ^ when the sample size is very large. Likewise, all else being equal, we are 
more likely to observe statistically significant ^ differences between two hierarchically 
nested models in a large sample than in a small sample. Therefore, any results should be 
viewed as a function of the power of the test as well as a test of the competing models. 

Fitting multiple models 

Generally, SEM specifies an a priori model, based on previous literature and substan­
tive hypotheses. Unlike traditional statistical techniques, in SEM, it is common to 
evaluate several models before adopting a final model. Sometimes, after fitting the 
initial model, a researcher might wish to change certain aspects of the model, a pro­
cess called respecification. There are at least three distinct reasons for estimating 
multiple structural equation models. 
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1 Theorists seek the most parsimonious explanation for a given phenomenon. 
The initial model includes all possible parameters. Subsequent models eliminate 
unnecessary (non-statlstlcally significant) parameters, a process that Is sometimes 
called trimming the model. They test the fit of the new more parsimonious 
model (with greater degrees of freedom) against the original model using the r 
difference test. This practice is far more defensible when eliminating paths that are 
conceptually expected to be 0 than when model trimming is conducted for purely 
empirical reasons (i.e. all paths that are non-statistically significant are omitted for 
purely empirical reasons; Kline, 2015). 

2 The researcher compares two or more competing theoretical models. Using SEM, the 
researcher(s) specify the competing models a priori and then compare the models to 
determine which model appears to better fit the data. 

3 The initial model exhibits poor fit. Subsequent models seek to find a model that 
provides better fit to the data. Purely empirically motivated model modifications 
lead down a treacherous path, as we discuss next. 

Model modification and exploratory analyses 

Modification indices 

If the model does not exhibit adequate fit, how should the researcher proceed? SEM 
output may include modification indices (sometimes called Lagrange multiplier tests). 
The modification index for a parameter is the expected drop in thst would result 
from freely estimating a particular parameter. Remember, drops as we add param­
eters to our model and lower x^ values indicate better fit. If we add a parameter to our 
model, the x^ needs to decrease by at least 3.84 points to be statistically significant 
at the .05 level. Therefore, some researchers request all modification indices above 
4. This provides a list of parameters that could be added to the model that would 
result in a statistically significant decrease in x^. Modification indices are univariate. 
Therefore, adding two parameters simultaneously would not necessarily result in a 
change in x^ equal to the sum of the two modification indices. 

The modification indices suggest which parameters might be added to the model 
to improve model fit. Parameters with larger modification index values result in 
larger deaeases in x\ resulting in greater improvements in model fit. Thus, it can be 
tempting to use these modification indices to make changes to improve the fit of the 
model. Proceed very cautiously! Although some suggested model modifications may 
be conceptually consistent with the research hypotheses, other model modifications 
may make no conceptual sense. Sometimes the modifications suggested by the SEM 
program are downright illogical and indefensible. Second, making changes based on 
modification indices (or model fit more generally) capitalises on chance idiosyncra­
sies of the sample data and may not be replicable in a new sample. Respedfication 
of structural equation models should be guided by theory, not simply by a desire to 
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improve measures of model fit. A good analyst uses modification indices very cau­
tiously (if at all) and reports and substantively defends each modification. 

One of the most common and controversial practices in SEM is model modifica­
tion. When the model which was specified a priori does not exhibit good fit to the 
data, the temptation to modify the model to achieve better fit can be irresistible. SEM 
software programs provide suggested model modifications, based solely on statistical 
criteria. The researcher is then left to determine what, if any, model modifications are 
warranted. Although using empirical data to guide decision-making may be helpful 
for 'simple' modifications, it does not tend to inform 'major changes in structure', and 
some indications for change may be 'nonsensical' (Bollen, 1989, p. 296). Moreover, 
when we use the same set of data to both develop a model and evaluate its fit, we 
undermine the confirmatory nature of our analyses (Breckler, 1990). Further, making 
modifications based on the desire to improve model capitalises on sampling error; 
such modifications are unlikely to lead to the true model (Kline, 2015; MacCullum, 
1986). If the initial model is incorrect, it is unlikely that specification searches will 
result in the correct model (Kelloway, 1995). Therefore, we advise against blindly 
following the brutally empirical suggestions of model modification indices. Models 
with more parameters may fit the data better simply because of chance fluctuations 
in the sample data. In essence, we can overfit a model to a set of data, and such 
models will not replicate well with a new sample. 'A model cannot be supported by a 
finding of good fit to the data when that model has been modified so as to improve 
its fit to that same data' (MacCallum, 2001, p. 129). Therefore, replication, not modi­
fication, provides the best path to enlightenment in SEM. 

Model fit versus model prediction 

A model may exhibit adequate fit, and yet do a poor job of predicting the criterion 
variable of interest. In fact, a model with no statistically significant parameters can fit 
well (Kelloway, 1995), whereas a 'poor' fitting model may explain a large amount of 
the variance in the outcome of interest. In fact, models with highly reliable manifest 
indicators tend to exhibit worse fit than models with less reliable indicators (Browne 
et al., 2(X)2). Many researchers who would never neglect to report the for a mul­
tiple regression analysis seem to overlook the importance of reporting similar meas­
ures of variance explained within SEM. Because SEM places a great deal of emphasis 
on model fit, some researchers lose sight of the fact that a good fitting model may 
explain very Uttle variability in the variable(s) of interest. To assess model prediction 
for a given endogenous (dependent) variable, we compute the proportion 
of variance in the variable that is explained by the model. The ratio of the variance 
of the disturbance (or error) to the total observed variance represents the proportion 
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of unexplained variance in the endogenous variable. Therefore, is simply 1 minus 
that ratio (Kline, 2015). Determining the variance explained in non-recursive models 
is more complex. See Bentler and Raykov (2000) for details on calculating of R^ for 
non-recursive models. 

When SEM gives you Inadmissible results 

In addition to examining the parameter estimates, the tests of significance and the 
fit indices, it is very important to examine several other areas of the output to ensure 
that the program ran correctly. The variances of the error terms and the disturbances 
should be positive and statistically significant. As in multiple regression, the stand­
ardised path coefficients generally fall between -1.00 and +1.00. Further, the stand­
ardised error terms and disturbances should fall in the range of 0.00 to 1.00. Negative 
error variances and correlations above 1 are called Heywood cases, and they indi­
cate the presence of an inadmissible solution. Heywood cases can be caused by 
specification errors, outliers that distort the solution, a combination of small sample 
sizes and only one or two indicators per factor, or extremely high or low population 
correlations that result in empirical underidentification (Kline, 2015). 

Additionally, the SEM program may fail to converge in the allotted number of 
iterations. Lack of convergence indicates that the algorithm failed to produce an 
ML solution that minimises the distance between the observed and model-implied 
covariance matrices. Again, when this happens, the output should not be trusted. 
Requiring very large or infinite numbers of iterations can be signs of a problem such 
as an underidentified model, an empirically underidentified model, bad start val­
ues, extreme multicollinearity, a tolerance value approaching 0 or other specification 
error (Kline, 2015). If the program fails to converge, inspect the output for possible 
errors or clues to the reason for the non-convergence, respecify the model to address 
the problem, and run the SEM again. It is never advisable to interpret output that 
contains any Heywood cases, non-convergent or inadmissible solutions. 

Alternative models and equivalent models 

In traditional SEM, we specify a particular model a priori, but our hypothesised 
model is statistically equivalent to a myriad of models. Two models are equivalent 
if they reproduce the same set of model-implied covariance (and other moment) 
matrices (Hershberger, 2006; Raykov & Penov, 1999; Tomarken & Waller 2003) 
Equivalent models have different causal stmctures but produce identical fit to 
the data (Hershberger, 2006). Equivalent models produce identical values for the 
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discrepancy between the model-implied matrix and the observed matrix; therefore, 
they result in identical values for model -f- and model fit indices. Perhaps the sim­
plest example of model equivalence Is to reverse the causal paths in a path ana­
lytic diagram. For example, specifying that X -* Y Z is equivalent to specifying 
that Z -> y X. For complex models, there are often dozens (or even hundreds!) 
of functionally equivalent models that the researcher has not tested. Hershberger 
(2006), Lee and Hershberger (1990) and Stelzl (1986) demonstrate rules for generat­
ing multiple equivalent models. Even when a model fits the data well, any statisti­
cally equivalent models would fit the data equally well (Tomarken & Waller, 2003, 
2(X)5). Equivalent models can lead to substantially different theoretical or substan­
tive conclusions (Hershberger, 2006; MacCallum et al., 1993; Tomarken & Waller, 
2CX)5). Unfortunately, researchers often fail to recognise the existence of equivalent 
models or consider equivalent models when interpreting the results of their research 
(MacCallum et al., 1993). 

In addition, an untested model may provide even better fit to the data than the 
researcher's hypothesised model, and there is no fail-safe method to protect against 
this possibility. Researchers who test an assortment of plausible competing models 
can bolster their argument for a particular model. However, because the number of 
rival alternative models may be virtually limitless, testing multiple competing models 
does not eliminate the possibility that an untested model may provide better fit to 
the data than does the researcher's model. Therefore, any specified model is a tenta­
tive explanation and is subject to future disconfirmation (McCoach et al., 2CX)7). 

A word of caution 

SEM is a powerful data analytic technique, but it is not magic. No matter how appealing 
and elegant SEM may be, it is a data analytic technique, and as such, it is incapable of 
resolving problems in theory or design (McCoach et al., 2007). The adage 'correlation 
does not imply causation' applies to SEM as well. Although SEM may appear to imply 
or specify causal relations among variables, causality is an assumption rather than a 
consequence of SEM (Brannick, 1995). Wright's original description of the technique 
still holds true today: 

The method of path coefficients does not furnish general formulae for deducing causal 
relations from knowledge of correlations and has never been claimed to do so. It does, 
however, within certain limitations, give a method of working out the logical conse­
quences of a hypothesis as to the causal relations in a system of correlated variables. 
The results are obtained by a combination of the knowledge of the correlations with 
whatever knowledge may be possessed, or whatever hypothesis it is desired to test, as 
to causal relations. (Wright, 1923, p. 254) 
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Using SEM allows us to ascertain whether a hypothesised causal structure is conas-
tent or inconsistent with the data; however, causal inferences ultimately depend 'on 
criteria that are separate from that analytic system' (Kazantzis et al., 2001, p. 1080)-

SEM can polarise researchers: the technique has l)een both demonised and can­
onised (Meehl & Waller, 2002). When applied and interpreted correctly, SEM is an 
invaluable tool that helps us to make sense of the complexities of our world, and 
SEM offers several advantages over traditional statistical techniques. However, SEM 
does not replace the need for good design and sound judgement. Causal inference in 
SEM requires the same assumptions as any other methods, and the ability to make 
causal inferences rests firmly on the design of the study. Strong designs allow for 
stronger causal inferences; weak designs lead to weak causal inferences. Just as 'no 
amount of sophisticated analyses can strengthen the inference obtainable from a 
weak design' (Kelloway, 1995, p. 216), no analytic method can replace the need for 
critical appraisal and common sense. 

SEM is both an art and a science. Because structural equation models are so open 
to modification, SEM allows for a great deal of artistic license on the part of the ana­
lyst. SEM allows researchers a great deal of flexibility and control over their analyses, 
which provides opportunities for both innovation and manipulation. It is this free­
dom that makes SEM so powerful and so appealing, but also so prone to misuse. With 
this flexibility comes great responsibility. We must build our models thoughtfully, 
describe our model building process fastidiously and interpret the results of our SEM 
analyses cautiously. Producers and consumers of structural equation model should 
realistically evaluate the strengths and limitations of this technique and should inter­
pret the results of SEM analyses accordingly. In Chapter 6, we provide concrete rec­
ommendations for defensible model building processes. However, before doing so. 
Chapter 5 delves into the important foundational topics of SEM specification and 
identification. 

Chapter Summary 

Strurtural equation modelling (SEM) refers to a family of techniques, including (but 
not limited to) path analysis, confirmatory factor analysis, structural regression models, 
autoregressive models and latent change models. 
SEM allows researchers to distinguish between observed and latent variables and to 
explicitly model both types of variables. 
Using latent variables in SEM accounts for potential errors of measurement, allowing 
researchers « ̂plicitly account for (and model) measurement error (Raykov & 
Marcouhdes, 2000). The ability to separate measurement error or 'error variance" from 
true variance is one of the reasons that SEM provides such powerful analyses 
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SEM is a regression-based technique. As such, it rests upon four key assumptions and 
requirements necessary for any regression-based analyses: (1) normality, (2) linearity, 
(3) independence and (4) adequate variability. 
The basic building block of any structural equation model is the variance-covariance 
matrix. 
Models with more parameters may fit the data better simply because of chance 
fluctuations in the sample data. It is possible to overfit a model to a set of data, and 
such models will not replicate well with a new sample. 
SEM allows researchers a great deal of flexibility and control over their analyses, which 
provides opportunities for both innovation and manipulation. In SEM, we must build 
models thoughtfully, describe the model building process fastidiously and interpret the 
results of analyses cautiously. 

Further Reading 

Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual 
Review of Psychology, 53, 605-634. 

This article discusses the definition and use of latent variables in psychology and 
social science research. 

Kline, R. B. (2015). Principles and practices of structural equation modeling (4th ed.). 
Guilford Press. 

This book is an oft-cited introductory guide to structural equation modelling. It 
provides a non-technical introduction to structural equation modelling as well as 
several other topics including multilevel structural equation modelling, growth 
curve analysis and mean and covariance structure analysis. 
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•6 I INTRODUCTION TO MODERN MODELLING METHODS 

In Chapter 4, we Introduced SEM as a technique for analysing systems of equations in 
which path diagrams pictorially represent systems of equations. This chapter provides 
an overview of model identification criteria and explicitly links path diagran»to 
the structural equations that they specify. After explaining the link between path 
diagrams and structural equations, we demonstrate how to use Wright's rules to denve 
the modcMmpllcft correUtlon/covaiiance matrix for a given SEM. Appendix 2 
provides a more technical introduction to the link between path diagrams and struc­
tural equations. Appendices 3 and 4 provide even greater detail on Wrights rules-
Appendix 3 demonstrates Wright's standardised tracing rules. Appendix 4 discusses 
Wrights unstandardised rules and covariance algebra. 

SEM involves solving of a set of simultaneous equations in which the known values 
are a function of the unknown parameters (Kenny & Milan, 2012). In Chapters 4 to 6, 
our known values consist of the observed variances and covariances because we limit 
our discussion to models that do not include means or mean structure. However, in 
Chapter 7, we introduce means and mean structure into our SEMs. 

To generate unique estimates for all these parameters, the SEM model must be identi­
fied (Kline, 2015). Identification involves demonstrating 'that the unknown parameters are 
functions only of the identified parameters and that these functions lead to unique 
solutions (BoUen, 1989, p. 88). If all parameters in the model are uniquely identified, then 
the model itself is identified. We provide a brief introduction to identification rules 
for recursive structural equation models. Recursive structural equation models 
have no feedback loops and no correlated disturbances. Therefore, any variable (V) 
cannot both be a predictor of and predicted by another variable (X). The rules of 
identification for non-recursive structural equation models are far more com­
plicated than the rules for recursive models. Given the introductory nature of this 
text, we present identification rules for recursive models only. However, readers who 
^interested In learning more about non-recursive models should read Paxton et al. 

1), which provides a very approachable introduction to non-recursive models. For 
a Her discussion of identification issues, see Rigdon (1995), Kline, 2015, Kenny and 
Milan (2012) or Steiger (2002). 

Computing degrees of freedom in SEM 

rami? ; " - PO^'We to estimate SEM 
leTsl thl as ANOVA and 

ce matrix (or the vanance-covanance 
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matrix plus means for models that include means). We cannot estimate more param­
eters than there are unique elements in the variance-covariance matrix, no matter 
how large our sample size is! 

Let's count the number of unique elements for the small variance-<ovariance 
matrix shown In Equation (5.1). There are six unique elements: three diagonal ele­
ments (the three variances) and three unique off-diagonal elements (the three unique 
covariances: coVj^, covjj and cov^j). (The covariances below the diagonal are identical 
to the covariances above the diagonal; that is, the covariance between variables 1 and 
3 is identical to the covariance between variables 3 and 1, so we count each of these 
covariances only once.) 

varj cov,2 cov, 
coVj, va^ coVj 
C0V3. cov„ var. 

(5.1) 

The number of unique elements in the variance-covariance matrix is the number of 
knowns (the information that we know before we begin our analyses). 

If there are many variables in the model, counting the number of unique elements 
in the variance-covariance matrix is tedious. Luckily, there is an easy formula to com­
pute the number of unique elements in the variance-covariance matrix. The number 
of unique elements in the variance-covariance matrix (the knowns) equals 

Knowns = (5.2) 
2 

where v = the number of observed variables in the variance-covariance matrix. 
Therefore, if there are 20 observed variables in the variance-covariance matrix, then 
the number of knowns equals = = A slight modification to the 
formula calculates the number of off-diagonal elements of the variance-covariance 
matrix (i.e. the number of unique correlations in a correlation matrix): v(v - l)/2, 
where v is (still) the number of observed variables. 

The number of knowns places an upper limit on the number of possible unknowns, 
which are the freely estimated parameters in the model. In SEM, we estimate sev­
eral different types of parameters: exogenous variances and endogenous variances 
(which can be either disturbances or measurement errors), paths and covariances/ 
correlations. For the number of parameters in the model (unknowns), we count the 
number of freely estimated variances, paths and covariances/correlations. The degrees 
of freedom in SEM equal the number of knowns (unique elements of the variance-
covariance matrix) minus the number of unknowns (freely estimated parameters). A 
model has positive degrees of freedom if the model contains fewer parameters than 
there are unique elements in the variance-covariance matrix. Measures of model fit 



98 INTRODUCTION TO MODERN MODELLING METHODS 

(chi-squaie, RMSEA, CFI, etc. are only available for models with positive degrees of 
freedom). 

Figure 5.1 depicts a simple path model with four observed variables: (1) parental 
expectations, (2) growth mindset, (3) academic persistence and (4) academic achieve­
ment. Of course, these constructs could be measured using latent variables, and that 
would be preferable. However, to start simply, we demonstrate tracing rules with a 
path model. The model estimates paths from parental expectations to growth mind­
set, academic persistence and academic achievement, from growth mindset to aca­
demic persistence and from academic persistence to academic achievement. 

Growth 
mindset 

Academic 
persistence 

Parental 
expectations 

Parental 
expectations Academic 

achievement 
Academic 

achievement 

Figure 5.1 A simple path model with four observed variables 

How many degrees of freedom does this model contain? First, we count the freely 
estimated parameters. We estimate variances for every exogenous variable and dis­
turbance variances for every endogenous variable in the model. The model in Figure 5.1 
estimates one exogenous variance (for parental expectations) and three disturbance 
variances (for growth mindset, academic persistence and academic achievement). 
The model also includes five freely estimated paths and zero covariances. Therefore, 
the number of freely estimated parameters (unknowns) equals 9 (5 paths + 1 exogenous 
variance + 3 disturbance variances). There are four observed variables, so the number of 
unique elements in the covariance matrix equals 4 * 5/2, or 10. The degrees of freedom 
for the model equals the number of knowns (10) minus the number of unknowns (9), 
or 1 df. Why is there 1 df7 Our model contains no direct effect of growth mindset to 
academic achievement. There is no path from growth mindset to academic achieve­
ment so that path is constrained to 0. By eliminating that path, in our hypothesised 
model, the effect of growth mindset on academic achievement is completely medi­
ated by academic persistence. For our model to fit the data, the correlation between 
growth m ndset and academic achievement must be completely explained by their 
mutual relationships with academic persistence. If this were not true the hypothe-
s.sed model (depicted above) would fit more poorly tharr the model thJt irtc Jes 

, path. Because th.s model has only 1 df, we know that the of the model is completely 
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attributable to the misfit due to the elimination of the path (or direct linkage) from 
growth mindset to academic persistence. 

When the number of knowns equals the number of unknowns, the model is said 
to be just-identified. A just-identified model contains as many knowns as unknowns, 
so the parameter estimates can always perfectly reproduce the variance-covariance 
matrix. Thus, the just-identified model 'fits' the variance-<ovariance matrix perfectly. 
Just-identified models always have 0 df. Adding a path (direct effect) from growth 
mindset to academic achievement produces a just-identified (fully saturated) model. 
For all just-identified models, both the and dfare 0. 

In fact, all multiple regression models are actually just-identified path models, so 
they have 0 df. The knowns are the number of observed variables, which is the sum 
of the predictors and the outcome variable. The unknowns are the regression coef­
ficients, the exogenous variances for the predictors, the residual variance for the out­
come variable and the covariances among all of the exogenous variables (the predictors). 
Because we allow all exogenous variables to correlate with each other, the number of 
freely estimated parameters is exactly equal to the number of unique elements of the 
variance-covariance matrix. 

If the specified model requires estimating more parameters than there are unique 
pieces of information in the variance-<ovariance matrix, the model has negative 
degrees of freedom and is underidentified. It is not possible to solve the set of structural 
equations for underidentified models because there are more unknowns than knowns. 
Just as it is not possible to find a unique solution to the equation x + y = 10 because 
the number of unknowns is greater than the number of knowns, it is not possible to 
uniquely identify all of the parameters in a model with negative degrees of freedom. 
Having non-negative degrees of freedom is a necessary (but not sufficient) condi­
tion for model identification: models with positive degrees of freedom can still be 
underidentified. The problem of underidentification is theoretical rather than statistical 
(Heise, 1975); it is not data dependent. (Empirical underidentification, on the other 
hand, is data dependent. See Kenny & Milan, 2012, for more information about empiri­
cal underidentification.) Therefore, it is important to evaluate whether or not the 
structural equation models of interest are identified or identifiable during the design 
phase of the study, prior to data collection. 

Luckily, although some of the identification rules for SEM are quite complex, the 
identification rules for recursive path models are actually quite simple. Recursive 
path/structural models with non-negative degrees of freedom are always identified. 
However, non-recursive structural equation models with positive degrees of freedom 
may not be identified. For more information on the identification of non-recursive 
models, see Berry (1984), Nagase and Kano (2017) and Paxton et al. (2011). The rules 
of identification also become more complex for measurement (factor) models, as we 
shall soon see. 
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Assuming that the model is not unidentified (inestimable) due to other problems 
in the specification, a recursive path model with positive degrees of freedom is 
ovendentified. An overidentified model uses a smaller number of parameters to esti­
mate all elements of the variance-<ovariance matrix, resulting in some discrepancy 
between the availalrie variance-covariance matrix and the parameters to be estimated 
(Kenny & Milan, 2012). 

In the case of overidentification, there is more than one way to estimate one or 
more of the parameters in the system of equations (Kenny, 2004). An overidentified 
model is more parsimonious than a just-identified model; it attempts to reproduce 
all the elements of the variance-<ovariance matrix with fewer parameters. As such, 
it is a simplification of reality. However, some level of detail or information is lost 
In that process. In such a scenario, we favour the solution that produces parameter 
estimates that maximise the likelihood of observing our data. 

SEM model fit is an indication of the degree to which our simplified model repro­
duces (or fails to reproduce) the variance-<ovariance matrix (Kenny & Milan, 2012). 
Measures of model fit (e.g. the test) are available for overidentified models; thus, 
it is possible to evaluate the fit of an overidentified model and test it against other 
competing models. In fact, it is only possible to examine model fit for models that 
are overidentified. 

As we discussed in Chapter 4, one of the great advantages of using SEM is the ability to 
incorporate latent variables. The path models that we just described specified structural 
relationships among variables. However, thus far, our simple path/mediation models 
have contained observed variables (but not latent variables). Next, we introduce the 
specification and identification of measurement models, which specify the (causal) 
relationships among latent and observed variables. Afterwards, we demonstrate the 
integration of path models and measurement models to estimate hybrid structural 
equation models with latent variables. 

Model specification of measurement (CFA) models 

Path diagrams, visual displays of latent variable models, are the most intuitive way 
to conceptualise measurement models. Figure 5.2 depicts a measurement model for 
math and reading ability as a standard CFA model. Recall that in a path diagram, rec­
tangles denote the indicators, or the observed variables, and circles represent latent 
variables. Each indicator is predicted by both a latent variable and an error. The small 
circles with 5's represent the measurement errors, or the residuals. The curved Une 
between the two latent variables indicates a covariance between the two exogenous 
latent variables. 
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Aioebra 

Geometry 

Measurement 

Comprehension 

Reading Vocabulary 

Ruency 

Figure 5.2 A standard confirmatory factor analysis (measurement) model for math and 
reading ability 

In Figure 5.2, paths connect each of the factors to the three indicators of those 
factors. Just as in multiple regression and path models, these paths indicate a direct 
effect from the factor to the indicator (observed variable) after controlling for any other 
variables that also have direct effects on the indicator. 

In a standard CPA model, each observed variable is an indicator of only one latent 
variable, and each observed variable is predicted by both the latent variable and an 
error. Two sources influence a given indicator - the factor (f) and the measurement 
error term (5), which encompasses all other unique sources of variance. In other 
words, a person's response to an item is determined partially as a function of his or 
her standing on the factor (latent variable) and partially as a function of error, noise 
or other variables that are not part of the model. The variance in the indicator (the 
observed variable) consists of two pieces: (1) the variance that can be explained by 
the latent variable (the factor variance) and (2) the variance that is not explained 
by the latent variable (5, the measurement error variance). We distinguish between 
measurement error, residual (error) variance in the measurement model, and dis­
turbance variance, residual variance in the structural model. 

A standard CPA model assumes that each factor is unidlmensional. Conceptually, 
imagine the attribute being measured by a unidlmensional factor falling on a straight 
line: people who are high on the factor possess more of the attribute and people 
who are low on the factor possess less of it. Unidimensionality indicates that the statisti­
cal dependence among a set of indicators is captured by a single latent construct 
(Crocker & Algina, 1986; McCoach, Gable et al., 2013). 
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The standard CFA model assumes that any correlations among the indicators result 
from their mutual relationship with the latent factor(s). The measurement error 
terms (5's) are independent of each other and the factors. The assumption of local 
independence specihes that after controlling for the factor, the partial correlation 
between each of the pairs of indicators is 0. All indicators are assumed to be inde­
pendent of each other, after controlling for the factor(s). Figure 5.2 contains no link­
ages {i.e. paths or correlations) among the measurement error terms: there are no 
relationships among the unexplained variances (6's) of any of the indicators. In the 
standard CFA model, each variable is predicted by only one factor. However, it is pos­
sible to specify a CFA in which more than one latent variable predicts a given indicator: 
When two or more latent constructs predict responses on an observed indicator, the 
indicator is mitltidimensloiial. For example, a test of word problems is likely to 
be multidimensional because both mathematics ability and reading ability predict 
performance on word problem tasks. 

Figure 5.2 contains a direct path from math to algebra but no direct path from reading 
to algebra, which means the direct path from reading to algebra is constrained to be 
(fixed at) 0. In other words, the model assumes that there is no direct effect of reading 
on algebra, after controlling for math. This does not mean that reading is unrelated to 
the indicators of mathematics achievement. Rather, the model specifies that the 
relationship between the reading factor and algebra is indirect: it is a function of the 
relationship between the reading and math factors and the path from the math factor 
to the algebra indicatoc Because the model contains no direct effect of reading on algebra 
after controlling for math achievement, the standardised path coefficient from math 
to algebra is also the model-implied correlation between the math factor and algebra. 
Squaring the standardised path coefficient from math to algebra computes the propor­
tion of variance in the algebra indicator that is explained by the math factor The 
proportion of variance in the indicator that is not explained by the factor is 1 - R^, which 
is also the error variance of the indicator divided by the total variance of the indicator. 

Model identification: measurement models/CFA 

Standard CFA estimates parameters for the paths from the latent factors to the observed 
vanables (the factor loadings), the variances of the latent variables, the variances of 
the measurement errors and the covariances (or correlations) among the latent vari­
ables. The factors have no Inherent scales because they are latent variables; they are 
not actually measured or observed. Therefore, to identify the CFA model, we must 

the latent variable. Scaling the latent variable provides an anchor to and meaning 
for the metric of the latent variable. TWo common options for scaling the latent vari 
able are the fixed factor variance strategy or the marker variable strategy 
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The fixed factor variance strategy constrains the variance of each factor to 1.0. In 
standard CFA models, the factor's mean is constrained to 0. Therefore, the fixed fac­
tor variance strategy results in a standardised solution: each latent variable In the 
model has a mean of 0 and a variance of 1. 

The marker variable strategy constrains one unstandardised path coefficient for each 
factor to 1 and freely estimates the variance of the latent factor. The variable whose 
unstandardised regression coefficient is fixed to 1 becomes the marker variable for 
the factor, and the factor's freely estimated variance is scaled in the same metric 
as the marker variable. Figure 5.2 employs the marker variable strategy. Generally, 
any variable that is reasonably strongly correlated with the factor can be a marker 
variable. Using an observed variable that is uncorrelated or only weakly correlated 
with the factor as the marker variable is problematic. Why? Fixing a path coefficient 
that is very small at 1.0 results in very large unstandardised path coefficients for the 
other indicators, as their coefficients are computed relative to the coefficient of the 
poor indicator. Therefore, it is advisable to select one of the strongest indicators as 
the marker variable. If the variables are measured in different metrics, it is helpful to 
choose a variable with the most interpretable metric to be the marker variable, given 
that the latent factor is scaled in the metric of the marker variable. 

In standard, single-group CFA, the two scaling methods (fixed factor variance and 
marker variable) result in statistically equivalent models. The marker variable strat­
egy is the default approach in many statistical software packages (e.g. Mplus, AMOS, 
lavaan). Furthermore, it is common to use the marker variable approach when con­
ducting multiple-groups CFA to assess the invariance of the model factor structure 
across different subsets of a sample. So, how does the latent variable scaling method 
impact the estimated parameters in a CFA model? The standardised parameter esti­
mates are identical, regardless of the scaling technique employed. However, the 
unstandardised parameter estimates differ across scaling techniques. Using the fixed 
factor variance strategy, the unstandardised parameter estimates are identical to the 
standardised parameter estimates. The marker variable approach scales the unstand­
ardised results in the metric of the marker variable for each factor. 

Identification in CFA models 

Freely estimated parameters in CFA 

The marker variable strategy constrains one path coefficient (factor loading) per fac­
tor to be 1.00 and freely estimates the remaining unstandardised path coefficients. 
Using the marker variable strategy, we estimate a factor variance for each of our latent 
variables and an error variance for each of our observed variables. Generally, standard 
CFA models allow all factors (which are exogenous latent variables) to be intercorreiated; 
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estimating inter-factor covariances (correlations) for all factors. If we allow any measure­
ment errors to be correlated (covary), then we must count those correlations (covariances) 
as estimated parameters as well. The number of unknowns (jjarameters to be estimated) 
equals the sum of the freely estimated paths, factor variances and covariances, and 
error variances and covariances. Recall, the number of knowns equals the number of 
unique elements in the variance-covariance matrix, which can be calculated using the 
formula: v (v + l)/2, where v is the number of observed variables. The degrees of free­
dom for a given model equals the number of knowns minus the number of unknowns. 

How many degrees of freedom does a single-factor model with three indicators have? 
A single-factor model with three indicators estimates six parameters (unknowns): one 
factor variance, two paths and three error variances. With three observed variables, 
the number of unique variances and covariances (the knowns) equals 3 * 4/2 » 6. The 
number of knowns (6) equals the number of unknowns (6). Thus, a single-factor model 
with three indicators is just-identified: it has 0 df. A single-factor model with four or 
more indicators is overidentified. For example, a standard single-factor model with 
four indicators contains 2 df. Why? This model contains eight unknowns (parameters 
to be estimated): one factor variance, three path/pattern coefficients and four error 
variances. The number of knowns equals the number of unique elements in the 
variance-<ovariance matrix, which is 4 * 5/2, or 10. There are 10 - 8 = 2 df. See if you 
can explain why a single-factor model with five indicators has 5 df} 

How many degrees of freedom does the model in Figure 5.2 contain? Using the fixed 
factor variance strategy, we estimate six paths, one covariance and six measurement 
enor variances, for a total of 13 parameters. Using the marker variable strategy, we 
estimate two factor variances, four paths, one covariance and six measurement error 
variances. Using either strategy, we estimate 13 parameters (unknowns). There are six 
observed variables in the model, so the variance-covariance matrix contains 6 * 7/2 = 21 
unique elements. Therefore, the model in Figure 5.2 contains 8 df (21 -13^ 8). Where 
are these 8 df? The model above reproduces 21 variances and covariances (six variances 
for the six observed variables and all of their covariances) using only 13 freely estimated 
parameters. Although the source of the degrees of freedom may seem less obvious in 
the measurement model, the logic is the same: a variance-covariance matrix contains 
a linkage between every observed variable. Using a fixed factor variance strategy, we 
estimate all paths and constrain the latent variances to 1. When fixing the factor 
variances to 1, the number of freely estimated paths and correlations in the measure­
ment model may not exceed the number of unique correlations in the covariance/ 
correlation matrix. 

'We are estimating one factor variance, four paths and five error varianrp* v. 
of unknowns = 10. The number of knowns = 5 • 6/2 = 15 15 - 10 -
model with five indicators has 5 df. " a single-factor 
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How many observed variables are needed to adequately measure each latent vari­
able? This is a very complex and nuanced issue. Using three or more observed vari­
ables is technically sufficient to estimate a single latent variable (factor). A standard 
one-factor model with three observed variables is just-identified. With four or more 
observed variables, the single-factor model is overidentified. For models with multiple 
factors, as few as two observed variables per factor might be technically adequate. 
However, from a theoretical standpoint, adequately measuring the latent variable of 
interest may require more indicators than are technically necessary. In general, the 
more abstract and loosely defined a construct is, the more indicators are necessary to 
adequately measure the latent variable (Nunnally & Bernstein, 1994). 

Models that include multidimensional indicators (observed variables that are pre­
dicted by two or more latent variables) can be more difficult to identify/estimate than 
standard CPA models with only unidimensional indicators (Kenny et al., 1998). 
This helps explain why more complex CPA models (e.g. multi-trait multi-method 
matrices; Campbell & Piske, 1959) are notoriously difficult to estimate (Kenny & 
Kashy, 1992; Marsh fir Grayson, 1995; Marsh & Hocevar, 1983). For CPA models 
that include correlated errors, in addition to ensuring that the number of knowns 
is equal to or greater than the number of unknowns, 'each latent variable needs 
two indicators that do not have correlated errors and every pair of latent variables 
needs at least one indicator that does not share correlated errors' (Kenny & Milan, 
2012, p. 153). 

In summary, standard CPA models (with unidimensional items and no correlated 
errors) are identified if the number of knowns is equal to or greater than the number 
of unknowns. However, the identification rules for models with correlated errors and 
models with multidimensional indicators are more complicated (Brown, 2015). For 
more details about the identification of such CPA models, see Kenny et al. (1998), 
who provide a thorough treatment of identification issues in CPA models. 

Degrees of freedom for hybrid SEM 
How many degrees of freedom does the hybrid SEM model in Figure 5.3 contain? 
There are seven observed variables: three indicators of academic persistence, 
three indicators of growth mindset and one indicator of academic achievement. 
Therefore, the number of knowns equals 7 * 8/2, or 28. How many parameters are 
freely estimated? Using the fixed factor variance strategy, we estimate six 
pattern coefficients (paths from latent variables to observed indicators of their 
respective factors), six measurement error variances, two disturbance variances 
and three structural paths (the paths among the conceptual variables of interest: 
growth mindset, academic persistence and academic achievement). Therefore, this 
model has 17 free parameters (unknowns). With 28 knowns and 17 freely estimated 



106 INTRODUCTION TO MODERN MODELLING METHODS 

parameters, there are 11 df(2» - 17). All 11 df come from the measurement portion 
of the model. There are three structural variables: (1) growth mindset, (2) academic 
persistence and (3) academic achievement, and there are linkages among these 
three structural variables. Therefore, the structural portion of the model is just-
identified. This means that any model misfit is due to misspecifying the measure­
ment portion of the model. We return to this issue in Chapter 6, when we describe 
the model building process. 

Growth 
rrUrxJset 

Academic 
achievement 

Figure 5.3 A hybrid structural equation model: A path model that includes latent 
variables 

Equations for a measurement (CFA) model 

Using the path diagram in Figure 5.2, we can represent the measurement model as 
a system of equations, as shown in Exhibit 5.1. The system of equations captures all 
the direct pathways among the variables but does not include (non-directional) 
correlations among variables. To start, let's write an equation for each of the 
endogenous variables in our model. The equation for each endogenous variable is 
analogous to a regression equation. The endogenous variable always appears on 
the left-hand side of the equation. Any (observed or latent) variable with a single-
headed arrow leading to the endogenous variable appears on the right-hand side 
of the equation. Because standard structural equation models are linear models, 
the terms are additive. 
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Exhibit 5.1 Systems of equations corresponding to Figure 5.2 

Algebra • A,Math + 5, 

Geometry • AjMath + ̂  

Measurement - AjMath + S, 

Compreherwion • A^Reading + 
Vocabulary - AjReading + 

Fluency - A^Reading 
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Introduction to systems of equations using path diagrams 

Getting started with Wright's rules 

Wright's tracing rales, developed in the 1910s and 1920s by biologist Sewall 
Wright (Heise, 1975), provide the basic principles of path analysis. Wright's 
standardised tracing rules provide the most intuitive method to generate the 
model-implied correlations from the standardised parameters for recursive path/ 
structural equation models. 

It is also possible to generate the model-implied variance-covariance matrix from 
the unstandardised parameter estimates using the nnstandardlsed tracing rules. 
However, the standardised tracing rules are both more straightforward and more 
common than the unstandardised tracing rules, and the standardised path coefficients 
and correlations are generally easier to interpret. In Appendix 3, we provide the 
technical details that undergird our discussion of Wright's standardised tracing rules 
In Appendix 4, we discuss Wright's rules for generating the model-implied covariances 
using the unstandardised path coefficients for CPA and path models and we demonstrate 
the equivalence of using either unstandardised tracing rules or covariance algebra 
for generating model-implied covariances. These technical details provide a deeper 
understanding of the mathematical underpinnings of SEM. 

Standardised tracing rules 
Wright's tracing rules for standardised variables (Wright, 1918,1934) are a set of rules 
for tracing the model which implies distinct correlations between two variables based 
on the structural relations Ijetween variables in a path diagram. The model-implied 
correlation matrix is essentially the standardised version of the model-implied covari­
ance matrix. Using Wright's standardised tracing rules (Loehlin, 2004; Wright, 1918, 
1934), we can determine the model-implied correlation between any two variables in 
a proper (recursive) path diagram using three simple rules: 
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1 No loops (you cannot pass through the same variable twice in one trace) 
2 No going forward then backward within a given trace (but you can go backward 

then forward) 
3 A maximum of one curved arrow per path 

Rule 2 states that traces can go backward and then forward, but not forward and 
then backward, which may seem confusing and capricious at first glance. Why can 
we go backward and then forward but not forward and then backward? Conceptually, 
rule 2 accounts for linkages due to common causes, but not linkages due to commrxi 
effects. We illustrate this idea with two simple three-variable systems of equations, 
depicted in Figures 5.4 and 5.5. 

•!'[v 

Figure 5.4 Tracing rule: You can go backward and then fonward. This figure illustrates a 
linkage due to common causes (upstream variables) 

Note. If X and Y are both predicted by Z, then they must be related to each other. 
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to Figur® 5.5 Tracing rule: No going forward and then backward. There is NO tinkaqe due 
common effects (downstream variables) uncage aue 

Note. X and y can both predict Z and still be uncorrelated with each other (Thev each oredirt d ff portions of the variance in Z.) ®y®3cn predict different 
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In Figure 5.4, Z predicts both X and Y. Because both X and Y share variance in 
common with Z, they must share variance in common with each other. Tracing back­
ward from K to Z and then forward from Z to X accounts for the variance that Y 
and X share, given that they share a common predictor (Z). In Figure 5.5, both X 
and Y predict Z. Two exogenous variables can predict the same endogenous variable 
without being related to each other. Similarly, two variables can be correlated with a 
third variable without being correlated with each other (Wright, 1934). In this case, 
X and Y are uncorrelated with each other (there is no curved arrow connecting X and 
T)» so each variable explains different portions of the variance in Z. The prohibition 
on tracing forward and then backward prevents counting linkages due to common 
effects when determining model-implied correlations. 

Using these three rules, we can determine the model-implied (or expected) cor­
relations among all the variables in the model. To do so, we sum all the compoaiMl 
paths, or traces, between two variables (i.e. direct and indirect as described in 
Chapter 4; Loehlin, 2004; Neale & Cardon, 1992). A compound path (trace) is a path­
way connecting the two variables following the three rules above and is the product of 
all constituent paths (Loehlin, 2004). However, there may be many compound paths 
that connect the same set of two variables. To compute the model-implied correla­
tion between two variables, first, take the product of all elements within each com­
pound path. Then sum all the compound paths. In other words, the model-implied 
correlation Involves multiplying each of the coefficients in a trace and summing over 
all possible traces (each trace is referred to as a compound path and we sum over the 
compound paths). Using these rules, we can compute the model-implied correlation 
between any two variables in a path diagram. 

Example of the standardised tracing rule 

Figure 5.6 is a path diagram with standardised path coefficients. Using the tracing 
rules, we can compute the model-implied correlations among all pairs of variables in 
the model (Table 5.1). The model-implied correlation between parental expectations 
and academic achievement is the sum of the compound paths (traces) connecting the 
two variables. What are all the potential traces from parental expectations to academic 
achievement? Using the tracing rule, there are three traces from parental exjoctations 
to academic achievement. The first is the direct effect of parental expectations on 
academic achievement: that path = .1. The second is the indirect effect of parental 
expectations on academic achievement through academic persistence: .3 * .5 = .15. 
The third is the indirect pathway through growth mindset and academic persistence: 
.2 * .4 • .5 = .04. The sum of these three compound pMths (.1 + .15 + .04 = .29) is the model-
implied correlation between parental expectations and academic achievement. In this 
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case, it Is also the total effect of parental expectations on academic achievement. The 
total effect and the model-implied correlation are identical when all traces involve 
only paths (i.e. none of the traces include correlations). 

Qiowth 
mindset 

Academic 
persistence 

Parental 
expectations 

Parental 
expectations .1 J Academic 

achievement 
Academic 

achievement 

Figure 5.6 Using the tracing rules to compute model-implied correlations 

Table 5.1 Model-implied correlations among the four observed variables in Figure 5.6 

Variable 
Parental Growth Academic 
Expectations Mindset Persistence 

Academic 
Achievement 

Parental Expectations 

Growth Mindset 

Academic Persistence 

Academic Achievement 

1.0 

.2 

.38 

.29 

1.0 

.46 

.25 

1.0 

.54 1.0 

What is the model-implied correlation of academic persistence and academic 
achievement? Again, we compute the model-implied correlation as the sum of the 
traces connecting the two variables. Using Wright's rules, there are three distinct 
traces that link academic persistence to academic achievement. The first is the most 
obvious: the direct effect of academic persistence on academic achievement has a 
standardised coefficient of .5. Rule 2 states that traces can go backward through 
arrowheads and then forward (but not forward and then backward). The second trace 
goes backward from academic persistence to growth mindset (b = .4), then back­
ward from growth mindset to parental expectations (b = .2) and then forward from 
parental expectations to academic achievement. The product of these three paths is 
.4 * .2 * .1 = .008. The third trace goes backward from academic persistence to paren­
tal expectations {b = .3), and then forward from parental expectations to academic 
achievement (.1). The product of these two paths is .3 VI = .03. The model-implied 
correlation between academic persistence and academic achievement is the sum of 
these three traces (compound paths): .5 + .03 + .008 = .538 (which rounds to 54) 
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The model-implied correlation between growth mindset and academic persistence 
is .46. Why? There are two distinct traces (compound paths) linking growth mindset 
and persistence: a direct pathway (b = .40) and a trace that goes backward through 
parental expectations (b = .20) then forward from parental expectations to persis­
tence (.30). That compound path is .06. The sum of the two compound paths results 
in a model-implied correlation of .46 (.40 + .06). 

Finally, even though there is no direct effect of growth mindset on academic 
achievement, the model-implied correlation between growth mindset and academic 
achievement is not 0. Why? Following Wright's rules, there are actually three com­
pound paths (traces) that link growth mindset and academic achievement. The first is 
the indirect effect of growth mindset on academic achievement via academic persis­
tence, which is .4 • .5 = .20. The second compound path traces backward from growth 
mindset to parental expectations {b = .2) and then forward from parental expecta­
tions to academic achievement (6 = .1). This compound path = .2 * .1 = .02. The 
third compound path traces backward from growth mindset to parental expectations 
(b = .2), then forward from parental expectations to academic persistence (.3), and 
then forward from academic persistence to academic achievement (.5), which equals 
.2 * ,3 * .5 = .03. Summing these three compound paths (traces) (.20 + .02 + .03) yields 
the model-implied correlation, which is .25. In other words, even though the model 
constrains the direct effect of academic persistence on academic achievement to 0, 
the model-implied correlation between academic persistence on academic achieve­
ment is .25. Using the tracing rules above, confirm that the model-implied correlation 
between parental expectations and academic persistence is .38. 

Standardised tracing rules for measurement models 

We can apply the tracing rules to compute model-implied correlations in a stand­
ard CFA model. Each indicator is predicted by only one factor and there are no 
correlations among measurement errors, which greatly simplifies the tracing 
rules. Because there Is only one compound path connecting any two variables, 
the model-implied correlation between the two variables of interest is simply the 
product of the paths and correlations connecting the two variables. If the factor 
model adequately explains the data, the correlation between any two indicators of 
the same factor should equal the product of the paths connecting them. The cor­
relation between two indicators on two different factors should equal the product 
of the paths connecting each indicator to its respective factor multiplied by the 
correlation between the two factors. 

Figure 5.7 contains standardised path coefficients and correlations for our CFA 
model. Using the standardised tracing rules, we can estimate the model-implied 
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correlation between two observed variables in our model using the path (pattern) coef­
ficients and correlation coefficients. For two observed variables within the same 
factor, the model-implied correlation is the product of the paths from the factor to 
each of the observed variables because we can go backward from one variable to the 
factor and then forward from the factor to the other variable. For example, the cor­
relation between the algebra and geometry scores is the product of the standardised 
path coefficients for the two paths leading from the Math factor to these respective 
scores: .80 * .70 = ,56. Likewise, the model-implied correlation between algebra and 
measurement is .8 * .6 = .48 and the model-implied correlation between geometry 
and measurement is .7 • .6 s .42. 
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.8 

Measurement 

.8 Comprehension .8 Comprehension .8 

Vocabulary Vocabulary 

Ruency Ruency 

Figure 5.7 A two-factor CFA model with standardised path coefficients and correlations 

To estimate the model-implied correlation between two observed variables from 
two different factors, we trace backward from observed variable 1 to its factor, then 
we trace through the correlation between the two factors (the curved arrow), and 
then we trace forward from factor 2 to observed variable 2. For example, the stand­
ardised path from the math factor to algebra scores is .80, the correlation between 
the math and reading factors is .50, and the standardised path coefficient from the 
reading factor to comprehension scores is .80. Therefore, the model-implied cor­
relation between algebra scores and comprehension scores is .80 * .50 * .80, or .32. 
The model-implied correlation between geometry and fluency is .7 * .5 * .6, which 
equals .21. Be sure that you can compute all the model-implied correlations'among 
the six observed variables in Table 5.2 using Figure 5.7. 
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Table 5.2 Model-implied correlations among the six : observed variables in Figure 5.7 

Variable Algebra Geometry Measurement Comprehension Vocabulary Fluency 

Algebra 1.0 
Geometry 56 1.0 
Measurement .4a .42 1.0 
Comprehension .32 .28 .24 1.0 
Vocabulary .28 245 .21 .56 1.0 
Fluency .24 .21 .18 .48 .42 1.0 

Using the tracing rule, we can also compute the model-implied correlations between 
the factors and the observed variables. In factor analysis, these are generally referred 
to as the structure coefficients. The model-implied correlation between the math factor 
and comprehension scores is the product of the correlation between the math 
factor and the reading factor (.50) and the standardised path from the reading factor 
to comprehension scores (.80) = .80 * .50 = .40. So even though the direct path from 
the math factor comprehension scores is 0, the model-implied correlation between 
the math factor and reading comprehension scores is .40 (and the model-implied 
correlation between algebra and reading comprehension scores is .32). 

In a standard CFA model, because the measurement error terms (8's) are independ­
ent of each other and of the factors, they do not contribute to the estimation of 
the model-implied correlations among the observed variables in the standard CFA 
model. Forcing the measurement errors to be uncorrelated with each other and with 
the factors specifies that the error variances in the observed indicators (the residual 
observed score variance that is not explained by their respective factors) are inde­
pendent (uncorrelated with each other). Allowing the errors of two variables to cor­
relate with each other indicates that factor structure does not adequately capture 
the conelation between the two variables: the two variables are either more or less 
correlated with each other than would be predicted by the CFA model. Usually, the 
correlation between the error variances is positive, indicating that the observed cor­
relation of the two observed variables is higher than would be explained by the fac­
tor structure: the two indicators share something in common that is not explained 
by the factor(s). Generally, correlated errors are indicative of unmodelled multidi-
mensionality. Correlated errors may signal the presence of method effects (e.g. mode 
of data collection, wording effects) or substantive similarities among variables that 
are not fully captured by the specified factor structure. Therefore, adding correlated 
errors to a model should be substantively motivated and conceptually defensible. 
Although we recommend correlating errors sparingly, sometimes it is appropriate or 
even necessary to correlate errors. For example, when conducting longitudinal CPAs, 
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It is common practice to allow the measurement error terms of the same indicator 
to correlate across time. Why? If the exact same measure is administered at multiple 
time points, it seems quite plausible that the unique variance in that measure would 
correlate across time, even after controlling for the latent variable at each time point. 
Conelating the errors allows the unexplained variance in an indicator at one time 
point to be related to the unexplained variance in the same indicator, measured at a 
different time point. 

What happens when we add correlated errors to a CFA/measurement model? 
Imagine that we add a correlation between the measurement errors of the compre­
hension and vocabulary scores (Figure 5.8). Both indicators load on the same latent 
variable (reading) and they are both unldimensional (only one factor predicts each 
of the Indicators). Therefore, the two indicators (a) load on the same factor, 
(b) have no cross-loadings with any other factors and (c) do not have correlated 
errors with any other indicators. In this restrictive scenario, adding a correlation 
between the two error terms perfectly reproduces the correlation between the two 
indicators (observed variables). Why? The correlation between the residuals can take 
on any positive or negative value (between -1 and 1) that best reproduces the corre­
lation between the two Indicators. Regardless of the parameter estimates of the two 
direct paths (factor loadings), it Is possible to specify an error correlation that per­
fectly reproduces the correlation between the observed variables. Under such con­
ditions, adding a correlation between two measurement errors of two indicators of 
the same factor eliminates the correlation between those two variables as a source of 
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Figure 5.8 A two-factor CFA model with standardised parameters and a correlated error 
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information that helps us to understand the factor structure of that latent construct. 
(However, if the indicators load on more than one factor, including cross-loadings, 
or if either of the indicators shares a correlated error with another indicator as well, 
then correlating their measurement errors does not exactly reproduce the correlation 
between the indicators.) 

In Chapter 6, we outline a sequence of model building steps. Then, using all 
that we have learned, we fit and interpret a latent variable (hybrid) structural 
equation model. 

Chapter Summary 

Identification involves demonstrating 'that the unknown parameters are functions only 
of the identified parameters and that these functions lead to unique solutions (Bollen, 
1989, p. 88). 
The number of knowns places an upper limit on the number of freely estimated 
parameters in the model (the unknowns). These unknowns are the parameters that we 
wish to estimate. 
A just-identified model contains as many knowns as unknowns, so the parameter 
estimates can always perfectly reproduce the variance-<ovariance matrix. 
An overidentified model uses a smaller number of parameters to estimate all elements 
of the variance-<ovariance matrix, resulting in some discrepancy between the available 
variance-covariance matrix and the parameters to be estimated. 
If the specified model requires estimating more parameters than there are unique 
pieces of information In the variance-covariance matrix, the model has negative 
degrees of freedom and is underidentified. It is not possible to solve the set of 
structural equations for underidentified models because there are more unknowns than 
knowns. 
In standard, single-group CFA, two scaling strategies result in statistically equivalent 
models: the fixed factor variable and marker variable strategies. 

Further Reading 

Kenny, D. A. (2004). Correlation and causality (Rev. ed.). Wiley-Interscience. http:// 
davidakenny.net/doc/cc_vl.pdf 

Kenny's classic book is out of print, but the pdf is available at the address above. 
This book explains identification rules and covariance algebra in great detaU. 

Kenny, D. A., & Milan, S. (2012). Identification: A nontechnical discussion of a 
technical issue. In R. H. Hoyie (Ed.), Handbook of structural equation modeling 
(pp. 145-163). Guilford Press. 
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As the title states, this book chapter by Kenny and Milan provides a non-technical 
discussion of the technical issue of identification. The chapter provides an 
overview and rules of thumb for identification. Furthermore, the chapter discusses 
identification for path analysis models without feedback (recursive), with feedback 
(non-recursive) and with omitted variables as well as latent variable models and 
latent growth models. 
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