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“One of the most 
important statistical 
and design problems 
in research” 
— William Shadish
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Attenuates estimates 
of correlation & 
variability 
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Theoretical background: Rubin’s missing data mechanisms

● Missing completely at random (MCAR) 
● Missing at random (MAR)
● Missing not at random (MNR)

How do you know 
which one of these 

mechanisms applies 
to your data?

TRICK QUESTION!!!

The same dataset can have all three 
mechanisms present.

The mechanisms present depends on the 
variables in your analysis.
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Missing At Random (MAR)

● Missingness is related to other measured variables in the analysis, but not to the underlying 
values of the incomplete variable itself. 
○ MAR is not actually random at all, despite the name…
○ In other words, the missingness is systematic. The propensity of missing data is 

correlated with other variables in the analysis.   
● Example: Substance abuse & self-esteem scores
● Less strict assumption than MCAR.  



Missing Not At Random (MNAR)

● Missingness is systematic and related to the hypothetical values of the incomplete variable. 
● Example: Missing questions on a reading test because you fail to understand the 

accompanying text excerpt 
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■ Combine results from different copies. 



Approach #1: Multiple Imputation
● Imputation: Data augmentation

○ Imputation step (“I-step”): 
■ Similar to stochastic regression imputation, we use regression equation to 

predict values for incomplete variables & add random noise to add variability to 
the data 

○ Posterior step (“P-step”):  
■ We use Bayesian estimation principles are used to get new estimates of the 

means & covariances and add random noise
● This is a “two-step iterative algorithm”

○ We use the updated parameter estimates to construct a new set of imputations for 
the next copy of the dataset

○ Important to not use consecutive iterations to ensure that copies are independent

Repeat to 
get multiple 
copies of  
data set
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Approach #2: Maximum Likelihood Estimation

● How do we find the parameter that gives use the largest log-likelihood (maximum 
likelihood estimates)? 
○ Remember: the population parameters are unknown! 
○ We “audition” different parameter values by substituting them into the function below. 
○ For each audition, we compute the sample log likelihood and see which values give 

us the largest sample log likelihood.  

Most important 
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Approach #2.5: Auxiliary variables 💪
● Adding auxiliary variables to our analysis can help “fine-tune” the missing data approaches.

○ Increase power
○ Reduce bias

● Auxiliary variables: Variables that are related to our variable of interest, but do not answer the 
research question directly 
○ Highly correlated with incomplete variable

● Example: 9th grade math performance → 12th grade math exam score


