When to use

- Slider scales (opinions, confidence ratings)
- Proportional data (% of women in academia)

When to use

- Slider scales (opinions, confidence ratings)
- Proportional data (% of women in academia)

Solutions

- Linear probability model
 - Just ordinary least squares (OLS) applied to a proportional outcome
 - Commonly used, but estimates can go out of the boundaries.

- Fractional logistic model
 - glm(..., family = binomial(link =
 "logit"))
 - Warning: using family = binomial() with a non-binary outcome variable

Beta - the use of the **Beta distribution** for the response variable

- Naturally limited to numbers between 0 and 1 (but doesn't include 0 or 1).
- Extremely flexible distribution and can take all sorts of different shapes and forms
- A probability distribution of probabilities

Beta distribution

- Two parameters: a/shape1, b/ shape 2
 - E.g., a = number of women, b = number of men

Distributional regression - modeling μ and ϕ , instead of slope and intercept

- $0 \rightarrow 0.0001; 1 \rightarrow 0.9999$
- model_beta <- betareg(prop.female ~ level |
 level, data = df, link = "logit")</pre>

Distributional regression - modeling μ and ϕ , instead of slope and intercept

- $0 \rightarrow 0.0001; 1 \rightarrow 0.9999$

model_beta <- betareg(prop.female ~ level |
level, data = df, link = "logit")</pre>

> tidy(model_beta)										
<pre># A tibble:</pre>	4 × 6									
component	term	estimate	std.error	statistic p.value						
<chr></chr>	<chr></chr>	<db1></db1>	<dbl></dbl>	<dbl> <dbl></dbl></dbl>						
1 mean	(Intercept)	0.376	0.022 <u>6</u>	16.6 4.10e- <mark>62</mark>						
2 mean	levelundergrad	-0.297	0.032 <u>0</u>	-9.28 1.69e-20						
3 precision	(Intercept)	1.34	0.031 <u>6</u>	42.4 0						
4 precision	levelundergrad	-0.334	0.041 <u>9</u>	-7.97 1.57e-15						

Beta regression - Bayesian

Treat μ and ϕ as distributions to model uncertainty

Population-Level Effects:										
	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS			
Intercept	0.34	0.02	0.29	0.39	1.00	4432	3088			
phi_Intercept	1.15	0.03	1.09	1.21	1.00	4025	3017			
levelundergrad	-0.32	0.03	-0.39	-0.25	1.00	3939	2676			
phi_levelundergrad	-0.35	0.04	-0.43	-0.27	1.00	4384	3092			

Beta regression - Bayesian

Treat μ and ϕ as distributions to model uncertainty

- model_beta_bayes <- brm(bf(prop.female.posi ~ level, phi ~ level), data = df, family = Beta(), chains = 4, iter =
2000, warmup = 1000, cores = 4)</pre>

Beta regression - Bayesian

Treat μ and ϕ as distributions to model uncertainty

model_beta_bayes <- brm(bf(prop.female.posi ~ level, phi ~ level), data = df, family = Beta(), chains = 4, iter =
2000, warmup = 1000, cores = 4)</pre>

Modelling a mixture of data-generating processes:

- 1. A logistic regression model that predicts if an outcome is 0 or not, defined by a
- 2. A beta regression model that predicts if an outcome is between 0 and 1 if it's not zero (μ and ϕ)

Modeling \mathbf{a} , $\boldsymbol{\mu}$ and $\boldsymbol{\phi}$

- $0 \rightarrow 0; 1 \rightarrow 0.9999$
- model_beta_zi <- brm(bf(prop.female ~
 level, phi ~ level, zi ~ level), data = df,
 family = zero_inflated_beta(), chains = 4,
 iter = 2000, warmup = 1000, cores = 4)</pre>

Is zero? TRUE FALSE

Modeling \mathbf{a} , $\boldsymbol{\mu}$ and $\boldsymbol{\phi}$

- model_beta_zi <- brm(bf(prop.female ~ level, phi ~ level, zi ~ level), data = df, family =
zero inflated beta(),chains = 4, iter = 2000, warmup = 1000, cores = 4)</pre>

Zero-inflated beta regression:

- 1. A logistic regression model that predicts if an outcome is 0 or not, defined by a
- 2. A beta regression model that predicts if an outcome is between 0 and 1 if it's not zero (μ and ϕ)

Zero-one-inflated beta regression:

- 1. A logistic regression model that predicts if an outcome is extreme (0 or 1) or not, defined by a
- 2. A logistic regression model that predicts if the extreme outcome is 1, defined by **y**
- 3. A beta regression model that predicts if an outcome is between 0 and 1 if it's not zero (μ and ϕ)

Modeling **a**, **y**, μ and ϕ

- $0 \rightarrow 0; 1 \rightarrow 1$

