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What IS Bayesian statistics: a
new framework of making
statistical inference! (Ham)

An example of Bayes Magic
(Alex)

When to use Bayesian statistics
for psychological research?
(Ham)

P.s. many of our slides were adapted from Cody’s
slides :) Go Cody!
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Bayesian statistics is fundamentally inference~

What is statistical inference? e True quantity: 0.7 head 0.3 tail

o  We don’t know this!!! But we want to
Try to figure out the true quantity of interest o  We know (or rather assume) the kind of
using samples probability distribution

e Sample: hhhtthhtthh
o 6/10 heads
o  4/10 tails
e From the sample, how can we figure out
the true quantity?
o  We cannot guarantee we know the true
quantity but we can justify for a best
estimate




Frequentist vs Bayesian

Frequentist (MLE): All eggs in one basket Bayesian: Probability of true quantity
e Calculate P(6 heads | p_h) for all values of e Objective: find out P(p_h | 6 heads) for all
p_h from O to 1 p_h.
o P(6 heads|p_h=0.5)=0.20508 e P(6 heads | p_h)-> magic of Bayes rule
o P heads|p _h=0.6)=0.25082
o P(6 heads | p_h=0.8)=0.08808 g
e Math tells us when p_h = 0.6, P(6 heads | ]
p_h) has the largest value (Duh!) 201
e Therefore if this sample is all we got, we 154

should infer that the true quantity is 0.6! 101
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Bayes’ rule (exciting version)

Posterior Likelihood Prior
probability l / probability
o
ph1d) - P@IWP®)
Ep(d |h)P(h')
h'EH

Sum over space

h: hypothesis of hypotheses

d: data Slides by Tom Griffiths



Comparing two simple hypotheses

» Contrast simple hypotheses:
— h4: “fair coin”, P(H) = 0.5
— h,:"always heads”, P(H) = 1.0
Bayes rule: P(h1d) - P(d 1 h)P(h)
Y P(d\h)P(h')
h'EH

« With two hypotheses, use odds form




Bayes’ rule in odds form

P(h1d) P(d\h) P(h)
P(h,1d) P(d|h,) P(h,)

d. data

h;, hy: models

P(h,|d): posterior probability 4, generated d
P(d|h)): likelihood of data d under model £,
P(h)): prior probability of 4,




Comparing two simple hypotheses

P(h|d) P(d|h) P(h)
P(h,1d) P(d|h,) P(h,)

d. HHTHT

h;, hy: “fair coin”, “always heads”
Pdh)= 125 P(h)=  999/1000
Pdh)= 0 P(h,)=  1/1000

P(h,|d) / P(h,|d) = infinity



Comparing two simple hypotheses

P(h|d) P(d|h) P(h)
P(h,1d) P(d|h,) P(h,)

d. HHHHH

hy, hy: “fair coin”, “always heads”
Pdh)= 1/25 P(h)=  999/1000
Pdhy)= 1 P(h,)=  1/1000

P(h,|d) | P(h,|d) = 30



Comparing two simple hypotheses

P(h|d) P(d|h) P(h)
P(h,1d) P(d|h,) P(h,)

d. HHHHHHHHHH

h;, hy: “fair coin”, “always heads”
Pdh)= 1210 P(h)=  999/1000
Pdhy)= 1 P(h,)=  1/1000

P(h,|d) | P(hy|d) = 1



The blue cab / green cab problem

A cab was involved in a hit and run accident at night. Two
cab companies, the Green and the Blue, operate in the city.
85% of the cabs in the city are Green and 15% are Blue.

A witness identified the cab as Blue. The court tested the
reliability of the witness under the same circumstances that
existed on the night of the accident and concluded that the
witness correctly identified each one of the two colors 80% of
the time and failed 20% of the time.

What is the probability that the cab involved in the accident
was Blue rather than Green knowing that this witness
identified it as Blue?

(Tversky & Kahneman, 1982)



Comparing two simple hypotheses

P(h|d) P(d|h) P(h)
P(h,d) P(d|h,) P(h,)

d: Blue

h;, h,: Blue, Green

Pdlh)= 0.8 P(h)) = 0.15
P(dhy)= 0.2 P(h,) = 0.85

P(h,|d) | P(h,|d) ~ 0.70 P(h,|d) = 0.41



Bayesian statistics

« Applying Bayes’ rule with two hypotheses is
fairly common in psychology
— usually to show people don’t seem to use it

« Extends to a finite number of hypotheses

* Much of Bayesian statistics involves working
with infinitely many hypotheses
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Pros and Cons

Cons: In practice, you will not be able to solve

for posterior but need to approximate, meaning:

1. Computationally intensive!!
a. Mostly likely you can find the equation for
P(H|D) but need to approximate it
2. Annoying Model Checks!
a. Many things to check to make sure your
model estimation is interpretable
b. Endless loop of tuning the prior to make
sure no divergence
3. Requires prior:
a. Solution: choose uninformative prior

Pros:

Give you more information:
a. Allow direct probabilistic statements
b. Capture uncertainty of estimates
Better philosophy of statistics:
a. According to some people
b. Makes prior choice explicit
c. Doesn’t need central limit theorem

a. Give you reliable stable estimates for
complicated models

Don’t need Null hypothesis



Regularization is a big pro!!

— — - Parameter value

Inequity o
- advantage §

I - disadvantage O- ;;»

I. ______________________________ 3
I ,,,,, e ) Inequity type
01 B Advantageous
B Disadvantageous
- - Base \Iveight Compete;lce effect Warmth effect

1
Base weight Competence effect Warmth effect



They are
related!

Bernstein-von Mises Theorem

Basically (mathematicians will
kill me for saying this), that
under large sample,
Bayesian = Frequentist

For our purposes, Bayesian
and Frequentist are both
correct! But ...



Ham’s personal recommendation for when to go Bayesian

e Don’tfix if it’s not broken: BAYESIAN ANAI.YSIS
o If whatever regression you are doing works

fine with the usual R packages (linear
regression, original regression, logistics
regression, etc), just don’t worry about
going Bayesian. You could if you want and
easy to do.
e Go Bayesian if it is broken:

o Parameter estimate too noisy to be
interpretable (need regularization)

o  Almost always use uninformative prior. If
not possible, be as uninformative as
possible.

WHY NOT ASIAN
ANALYSIS 2




