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Count data

DV that takes on discrete, non-negative values (0, 1, 2, 3, 4, 5...)
Measured during a fixed period of time
Low arithmetic mean (typically <10)

Coxe et al. (2009)



Poisson distributions

| Characterized by a single parameter A,
p=1 which defines both the mean (p) and
E variance

0.3 IJ — 2.5

Probability
° o ¢
o - N
i

0.4

0.3 1
z
3 02! H=5
2
[
o

0.1 7

N ]

0 5 10 15 20 25 30

Coxe et al. (2009)



Poisson distributions
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Example: Naturalistic object handling frequency

DV: count of unique objects handled per hour

IVs: age, cultural context/site, sex




Example: Naturalistic object handling frequency

DV: count of unique objects handled per hour (p = 5.98)
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Why OLS regression doesn’t work

Countvariable as |V:

- If variance is low, then coefficient estimates are unstable and have
high SEs

Count variable as DV:

- Can return negative A values (predicted mean counts) which don’t
make sense

- Biased SEs and significance tests
- Violations of linear model assumptions...

Coxe et al. (2009)



Two key assumptions of OLS error structure
often violated by count data

data = model + error

m_ols <- lmin_objects ~ age*site + sex, data = data

(1) Normally distributed errors
(2) Homoskedasticity of errors




Two key assumptions of OLS error structure
often violated by count data

(1) Normally distributed errors

performance: : check_normality(m_ols performance: : check_model(m_ols, check = c("qq"

Warning: Non-normality of residuals detected (p < .001). Normality of Residuals
Dots should fall along the line

Sample Quantile Deviations
N

-2 0 2
Standard Normal Distribution Quantiles



Two key assumptions of OLS error structure
often violated by count data

(2) Homoskedasticity of errors (constant error variance)

performance: : check_homogeneity m_ols performance: : check_model(m_ols, check = c("homogeneity"

Warning: Variances differ between groups Homogeneity of Variance
(Bartlett Test, p = 0.000). Reference line should be flat and horizontal

N

J|Std. residuals|
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Poisson regression

log(p) = by + b X; + byX; +---+ b X,

where:

ﬁ is the predicted mean count

bo is the log of the predicted mean count when all predictors are O (if
dummy coded/not centered) or at their mean (if deviation coded/centered)

b,

in predictor Xp holding all other predictors constant

is the change in the log of the predicted count for each one-unit change

m_poisson <- glmin_objects ~ age*site + sex,

summary m_poisson

Coefficients:

family = poisson(link = "log'
data =

data

Estimate Std. Error z value
0.016107 106.780 < 0.0000000000000002
0.001148 24.046 < 0.0000000000000002

(Intercept) 1.719951

age 0.027605
site 0.185340
sex -0.074721

age:site -0.007414

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘1

0.032364
0.030846
0.002265

5.727
-2.422
-3.273

Pr(>1zl)

0.0000000102
0.01542
0.00106

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 5290.5 on 741 degrees of freedom
Residual deviance: 4667.3 on 737 degrees of freedom

AIC: 6646.3

Number of Fisher Scoring iterations: 6

% %k

% %k

% %k

* %k



Poisson regression

log(p) = by + b X; + byX; +---+ b X,

m_poisson <- glmin_objects ~ age*site + sex,

family = poisson(link = "log"
where: data = data
A . .
M is the predicted mean count summary(m_poisson
bo is the log of the predicted mean count when all predictors are O (if Coefficient
oerricients:
dummy coded/not centered) or at their mean (if deviation coded/centered) Estimate Std. Error z value Pr(>1zl1)

. . : : (Intercept) 1.719951 ©.016107 106.780 < 0.0000000000000002 ***
bp is the change in the log of the predicted count for each one-unit change oGE 0.027605 0.001148 24.046 < 0.0000000000000002 ***
, . . . site 0.185340 0.032364 5.727 0.0000000102 ***
in predictor Xp holding all other predictors constant cox i, b oosie o d B 5

age:site  -0.007414  0.002265 -3.273 0.00106 **

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

bage: For eaCh One_unit increase in age’ there iS a 003 Null deviance: 5290.5 on 741 degrees of freedom
unitincrease in the log of the # of objects handled per o SIS RSles RIGER SSRSE S0 SISCes
hour o

Number of Fisher Scoring iterations: 6



Poisson regression

log(p) = by + b X; + byX; +---+ b X,

m_poisson <- glm n_objects ~ age*site + sex,

family = poisson(link = "log"),
where: data = data
ﬁisthepwedknedrneancount : ; :
tidy(m_poisson, exponentiate = TRUE) %>%
bo is the log of the predicted mean count when all predictors are O (if kable(digits = 3, format = "markdown"
dummy coded/not centered) or at their mean (if deviation coded/centered)
bp is the change in the log of the predicted count for each one-unit change
. . . . term estimate std.error statistic p.value
in predictor Xp holding all other predictors constant
(Intercept) 5.584 0.016 106.780 0.000
or exponentiate both sides of the equation to age 1.028 0.001 24.046 0.000
. . . s . . . it 1.204 0.032 5.727 0.000
interpret in original units (i.e., count):
sex 0.928 0.031 -2.422 0.015
age:site 0.993 0.002 -3.273 0.001

H = exp(b, + by X; + b,X, +---+ b X))

incidence rate ratio (IRR)



Poisson regression

log(|.|) = bo + b1X1 + I:)2X2 Fooot prp . . .
m_poisson <- glmin_objects ~ age*site + sex,

. family = poisson(link = "log"),
where: data = data

ﬁ is the predicted mean count : ; :
tidy(m_poisson, exponentiate = TRUE) %>%

bo is the log of the predicted mean count when all predictors are O (if kable(digits = 3, format = "markdown"
dummy coded/not centered) or at their mean (if deviation coded/centered)
bp is the change in the log of the predicted count for each one-unit change
. . . . term estimate std.error statistic p.value
in predictor Xp holding all other predictors constant
(Intercept) 5.584 0.016 106.780 0.000
age 1.028 0.001 24.046 0.000
site 1.204 0.032 5.727 0.000
. . . 0.928 0.031 -2.422 0.015
b.ee: For each one-unit increase in age, the # of objects 5ex
handled per hour increases by a rate of 1.03 age:site 0.993 0.002 -3.273 0.001

incidence rate ratio (IRR) > 1



Two common problems

Overdispersion: more variability in counts than expected

Zero inflation: more zero counts than expected



Overdispersion (variance > mean)

# of observations
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performance: : check_overdispersion m_poisson

# Overdispersion test

dispersion ratio = 6.214
Pearson's Chi-Squared = 4579.988
p-value = < 0.001

Overdispersion detected.

performance: : check_model m_poisson, check = c("overdispersion'

Overdispersion and zero-inflation
Observed residual variance (green) should follow predicted residual variance (blue)

Residual variance
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Overdispersion (variance > mean)

Commonly occurs when: How to deal with this:
(1) Animportant predictoris not (1) Overdispersed Poisson regression
included in the model model that includes a dispersion

(2) Observations are not independent parameter, ¢

(i.e., contagion/state dependence) (2) Negative binomial regression
model that accounts for variability
among individuals who have the
same predicted value (variance is a
quadratic function of the mean)



Zero inflation (structural zeroes 1 positive skew)

performance: : check_zeroinflation(m_poisson

200 # Check for zero-inflation
g Observed zeros: 196
o 150 Predicted zeros: 9
-(4?5 Ratio: 0.05
>
CT) 100 Model is underfitting zeros (probable zero-inflation).
(7))
0O
@)
o 50
H

0 — I

0 10 20 30
# of unique objects per hour



Zero inflation (structural zeroes 1 positive skew)

Commonly occurs when: How to deal with this:
(1) Structural zeroes are not (1) Eliminate zero counts (ideally
anticipated in original study design beforehand by excluding certain

groups as needed)
(2) Zero inflated Poisson model

# alcoholic drinks per week (3) Zero inflated negative binomial
non-drinkers vs. drinkers model




Dealing with multiple Poisson assumption
violations

Overdispersion: more variability in counts than expected
Zero inflation: more zero counts than expected*
State dependence: non-independent observations*
best_model <- glmmTMB n_objects ~ age*site + sex + (1llchild
data = data,

ziformula = ~age*site+sex,
family = nbinom2

)

Dispersion parameter for nbinom2 family (): 3.18

Conditional model: Zero-inflation model:

Estimate Std. Error z value Pr(>1z1) - Estimate Std. Error z value Pr(>1zl)
g;ztercept) ;:gggzgi g:;gg;g? 12:;2; < e.eeeoeeog?ggggggi - (Intercept) -1.62033  0.13753 -11.782 <0.0000000000000002 ***
siteTseltal -0.216756  0.183825 -1.179 0.238 zf:e ’g:ggg;g g:g;;gg ";:;2; g:;:;
sexM 0.153828 ©0.183978 0.836 0.403 o 0 25038 0 25703 0 990 o 379
age:siteTseltal 0.013103 0.013748 0.953 0.341 age:site 0.00917 0.02189 0.419 0.675

R . Ceskok ) Ckk? (%) ¢ ¢ -
Signif. codes: @ 0.001 .01 °+* 0.65 °." 0.1 ° ° 1 Signif. codes: © “*** 9.001 “**’ 0.01 “*’ 0.05 .’ 0.1 ¢ * 1



Dealing with multiple Poisson assumption
violations

Overdispersion: more variability in counts than expected
Zero inflation: more zero counts than expected*
State dependence: non-independent observations*

best_model <- glmmTMB n_objects ~ age*site + sex + (1llchild), Rosse Tseltal
data = data,

ziformula = ~age*site+sex, é

family = nbinom2 g*
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