6

"A family of alternative regression models that is more appropriate for outcome variables with low count"

Count data

DV that takes on discrete, non-negative values (0, 1, 2, 3, 4, 5...) Measured during a fixed period of time Low arithmetic mean (typically <10)

Poisson distributions

Characterized by a single parameter λ , which defines <u>both</u> the mean (μ) and variance

Coxe et al. (2009)

Poisson distributions

Characterized by a single parameter λ , which defines <u>both</u> the mean and variance

When $\mu > 10$, the Poisson distribution approximates the normal distribution

Coxe et al. (2009)

Example: Naturalistic object handling frequency

DV: count of unique objects handled per hour

IVs: age, cultural context/site, sex

Example: Naturalistic object handling frequency

DV: count of unique objects handled per hour ($\mu = 5.98$)

Why OLS regression doesn't work

Count variable as IV:

- If variance is low, then coefficient estimates are unstable and have high SEs

Count variable as DV:

- Can return negative λ values (predicted mean counts) which don't make sense
- Biased SEs and significance tests
- Violations of linear model assumptions...

Two key assumptions of OLS error structure often violated by count data

data = model + error

m_ols <- lm(n_objects ~ age*site + sex, data = data)</pre>

(1) Normally distributed errors(2) Homoskedasticity of errors

Two key assumptions of OLS error structure often violated by count data

(1) Normally distributed errors

performance::check_normality(m_ols)

Warning: Non-normality of residuals detected (p < .001).

Two key assumptions of OLS error structure often violated by count data

(2) Homoskedasticity of errors (constant error variance)

performance::check_homogeneity(m_ols)

Warning: Variances differ between groups (Bartlett Test, p = 0.000).

performance::check_model(m_ols, check = c("homogeneity"))

 $log(\hat{\mu}) = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p$

where:

 $\hat{\mu}$ is the predicted mean count

 b_0 is the log of the predicted mean count when all predictors are 0 (if dummy coded/not centered) or at their mean (if deviation coded/centered) **b**_p is the change in the log of the predicted count for each one-unit change in predictor X_p holding all other predictors constant

m_poisson <- glm(n_objects ~ age*site + sex,</pre> family = poisson(link = "log"), data = data)

summary(m_poisson)

Coefficients:					
	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	1.719951	0.016107	106.780	< 0.000000000000002	***
age	0.027605	0.001148	24.046	< 0.000000000000002	***
site	0.185340	0.032364	5.727	0.000000102	***

< 0.0000000000000002 site 0.000000102 *** -0.074721 0.030846 -2.422 0.01542 * sex 0.002265 -3.273 0.00106 ** age:site -0.007414 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 5290.5 on 741 degrees of freedom Residual deviance: 4667.3 on 737 degrees of freedom AIC: 6646.3

Number of Fisher Scoring iterations: 6

 $log(\hat{\mu}) = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p$

where:

 $\hat{\mu}$ is the predicted mean count

 b_0 is the log of the predicted mean count when all predictors are 0 (if dummy coded/not centered) or at their mean (if deviation coded/centered) b_p is the change in the log of the predicted count for each one-unit change in predictor X_p holding all other predictors constant

b_{age}: For each one-unit increase in age, there is a 0.03 unit increase in the log of the # of objects handled per hour

summary(m_poisson)

Coefficients:

	Estimate S	Std. Error	z value	Pr(> z)
(Intercept)	1.719951	0.016107	106.780	< 0.000000000000002 ***
age	0.027605	0.001148	24.046	< 0.000000000000002 ***
site	0.185340	0.032364	5.727	0.000000102 ***
sex	-0.074721	0.030846	-2.422	0.01542 *
age:site	-0.007414	0.002265	-3.273	0.00106 **
Signif. code	es: 0 '***	' 0.001'**	° 0.01 '	*' 0.05'.'0.1''1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 5290.5 on 741 degrees of freedom Residual deviance: 4667.3 on 737 degrees of freedom AIC: 6646.3

Number of Fisher Scoring iterations: 6

$$log(\hat{\mu}) = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p$$

where:

 $\widehat{\boldsymbol{\mu}}$ is the predicted mean count

 b_0 is the log of the predicted mean count when all predictors are 0 (if dummy coded/not centered) or at their mean (if deviation coded/centered) b_p is the change in the log of the predicted count for each one-unit change in predictor X_p holding all other predictors constant

or exponentiate both sides of the equation to interpret in original units (i.e., count):

$$\widehat{\boldsymbol{\mu}} = \exp(\mathbf{b}_0 + \mathbf{b}_1 \mathbf{X}_1 + \mathbf{b}_2 \mathbf{X}_2 + \dots + \mathbf{b}_p \mathbf{X}_p)$$

```
tidy(m_poisson, exponentiate = TRUE) %>%
kable(digits = 3, format = "markdown")
```

term	estimate	std.error	statistic	p.value
(Intercept)	5.584	0.016	106.780	0.000
age	1.028	0.001	24.046	0.000
site	1.204	0.032	5.727	0.000
sex	0.928	0.031	-2.422	0.015
age:site	0.993	0.002	-3.273	0.001

 $log(\hat{\mu}) = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p$

where:

 $\hat{\mu}$ is the predicted mean count

 b_0 is the log of the predicted mean count when all predictors are 0 (if dummy coded/not centered) or at their mean (if deviation coded/centered) b_p is the change in the log of the predicted count for each one-unit change in predictor X_p holding all other predictors constant

b_{age}: For each one-unit increase in age, the # of objects handled per hour increases by a rate of 1.03 tidy(m_poisson, exponentiate = TRUE) %>%
kable(digits = 3, format = "markdown")

term	estimate	std.error	statistic	p.value
(Intercept)	5.584	0.016	106.780	0.000
age	1.028	0.001	24.046	0.000
site	1.204	0.032	5.727	0.000
sex	0.928	0.031	-2.422	0.015
age:site	0.993	0.002	-3.273	0.001

incidence rate ratio (IRR) > 1

Two common problems

Overdispersion: more variability in counts than expected

Zero inflation: more zero counts than expected

Overdispersion (variance > mean)

performance::check_overdispersion(m_poisson)

Overdispersion test

dispersion ratio = 6.214 Pearson's Chi-Squared = 4579.988 p-value = < 0.001

Predicted mean

Overdispersion (variance > mean)

Commonly occurs when:

- (1) An important predictor is not included in the model
- (2) Observations are not independent (i.e., contagion/state dependence)

How to deal with this:

- (1) Overdispersed Poisson regression model that includes a dispersion parameter, φ
- (2) Negative binomial regression model that accounts for variability among individuals who have the same predicted value (variance is a quadratic function of the mean)

Zero inflation (structural zeroes \uparrow positive skew)

performance::check_zeroinflation(m_poisson)

Check for zero-inflation

Observed zeros: 196 Predicted zeros: 9 Ratio: 0.05

Model is underfitting zeros (probable zero-inflation).

Zero inflation (structural zeroes \uparrow positive skew)

Commonly occurs when:

(1) Structural zeroes are not anticipated in original study design

How to deal with this:

- (1) Eliminate zero counts (ideally beforehand by excluding certain groups as needed)
- (2) Zero inflated Poisson model
- (3) Zero inflated negative binomial model

Dealing with multiple Poisson assumption violations

Overdispersion: more variability in counts than expected **Zero inflation:** more zero counts than expected* **State dependence:** non-independent observations*

Dispersion parameter for nbinom2 family (): 3.18

Conditional model:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	1.654968	0.158146	10.465	< 0.000000000000002 ***
age	0.038671	0.009571	4.040	0.0000534 ***
siteTseltal	-0.216756	0.183825	-1.179	0.238
sexM	0.153828	0.183978	0.836	0.403
age:siteTseltal	0.013103	0.013748	0.953	0.341
Signif. codes:	0 '***' 0	.001 '**' 0	.01'*'0	0.05'.'0.1''1

Zero-inflation model:

	Estimate S	td. Error	z value	Pr(> z)	
(Intercept)	-1.62033	0.13753	-11.782	<0.0000000000000002	***
age	-0.01617	0.01126	-1.437	0.151	
site	0.00598	0.25998	0.023	0.982	
sex	0.25438	0.25703	0.990	0.322	
ge:site	0.00917	0.02189	0.419	0.675	
signif. code	es: 0 '***	' 0.001 '*	**' 0.01	'*' 0.05 '.' 0.1 '	'1

Dealing with multiple Poisson assumption violations

Overdispersion: more variability in counts than expected **Zero inflation:** more zero counts than expected* **State dependence:** non-independent observations*

