
Poisson regression

“A family of alternative regression models that is more appropriate
for outcome variables with low count”



Count data

DV that takes on discrete, non-negative values (0, 1, 2, 3, 4, 5…)
Measured during a fixed period of time
Low arithmetic mean (typically <10)

Coxe et al. (2009)



Poisson distributions

Coxe et al. (2009)

Characterized by a single parameter 𝜆, 
which defines both the mean (µ) and 
variance

µ = 1
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Poisson distributions

Coxe et al. (2009)

Characterized by a single parameter 𝜆, 
which defines both the mean and variance

When µ > 10, the Poisson distribution 
approximates the normal distribution

µ = 1

µ = 2.5

µ = 5

µ = 10



Example: Naturalistic object handling frequency
DV: count of unique objects handled per hour

IVs: age, cultural context/site, sex



Example: Naturalistic object handling frequency
DV: count of unique objects handled per hour (µ = 5.98)



Why OLS regression doesn’t work

Count variable as IV:
- If variance is low, then coefficient estimates are unstable and have 
high SEs

Count variable as DV:
- Can return negative 𝜆 values (predicted mean counts) which don’t 

make sense
- Biased SEs and significance tests
- Violations of linear model assumptions…

Coxe et al. (2009)



Two key assumptions of OLS error structure 
often violated by count data

data = model + error

!𝒆i	=	𝒀i	-	'𝒀i

(1) Normally distributed errors
(2) Homoskedasticity of errors



Two key assumptions of OLS error structure 
often violated by count data
(1) Normally distributed errors



Two key assumptions of OLS error structure 
often violated by count data
(2) Homoskedasticity of errors (constant error variance)



Poisson regression
log((µ) = b0 + b1X1 + b2X2 +···+ bpXp

where:
 !µ is the predicted mean count

 b0 is the log of the predicted mean count when all predictors are 0 (if 
dummy coded/not centered) or at their mean (if deviation coded/centered)
 bp is the change in the log of the predicted count for each one-unit change 
in predictor Xp holding all other predictors constant



Poisson regression
log((µ) = b0 + b1X1 + b2X2 +···+ bpXp

where:
 !µ is the predicted mean count

 b0 is the log of the predicted mean count when all predictors are 0 (if 
dummy coded/not centered) or at their mean (if deviation coded/centered)
 bp is the change in the log of the predicted count for each one-unit change 
in predictor Xp holding all other predictors constant

bage: For each one-unit increase in age, there is a 0.03 
unit increase in the log of the # of objects handled per 

hour



Poisson regression
log((µ) = b0 + b1X1 + b2X2 +···+ bpXp

where:
 !µ is the predicted mean count

 b0 is the log of the predicted mean count when all predictors are 0 (if 
dummy coded/not centered) or at their mean (if deviation coded/centered)
 bp is the change in the log of the predicted count for each one-unit change 
in predictor Xp holding all other predictors constant

or exponentiate both sides of the equation to 
interpret in original units (i.e., count):

(µ = exp(b0 + b1X1 + b2X2 +···+ bpXp)

incidence rate ratio (IRR)

term estimate std.error statistic p.value

(Intercept) 5.584 0.016 106.780 0.000

age 1.028 0.001 24.046 0.000

site 1.204 0.032 5.727 0.000

sex 0.928 0.031 -2.422 0.015

age:site 0.993 0.002 -3.273 0.001



Poisson regression
log((µ) = b0 + b1X1 + b2X2 +···+ bpXp

where:
 !µ is the predicted mean count

 b0 is the log of the predicted mean count when all predictors are 0 (if 
dummy coded/not centered) or at their mean (if deviation coded/centered)
 bp is the change in the log of the predicted count for each one-unit change 
in predictor Xp holding all other predictors constant

term estimate std.error statistic p.value

(Intercept) 5.584 0.016 106.780 0.000

age 1.028 0.001 24.046 0.000

site 1.204 0.032 5.727 0.000

sex 0.928 0.031 -2.422 0.015

age:site 0.993 0.002 -3.273 0.001
bage: For each one-unit increase in age, the # of objects 

handled per hour increases by a rate of 1.03

incidence rate ratio (IRR) > 1



Two common problems
Overdispersion: more variability in counts than expected

Zero inflation: more zero counts than expected



Overdispersion (variance > mean)



Overdispersion (variance > mean)

Commonly occurs when:
(1) An important predictor is not 

included in the model
(2) Observations are not independent 

(i.e., contagion/state dependence)

How to deal with this:
(1) Overdispersed Poisson regression 

model that includes a dispersion 
parameter, φ

(2) Negative binomial regression 
model that accounts for variability 
among individuals who have the 
same predicted value (variance is a 
quadratic function of the mean)



Zero inflation (structural zeroes ↑ positive skew)



Zero inflation (structural zeroes ↑ positive skew)

Commonly occurs when:
(1) Structural zeroes are not 

anticipated in original study design

How to deal with this:
(1) Eliminate zero counts (ideally 

beforehand by excluding certain 
groups as needed)

(2) Zero inflated Poisson model
(3) Zero inflated negative binomial 

model
# alcoholic drinks per week
non-drinkers vs. drinkers



Dealing with multiple Poisson assumption 
violations

Overdispersion: more variability in counts than expected
Zero inflation: more zero counts than expected*
State dependence: non-independent observations*
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